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Statistical Properties of SEE Rate Calculation in the
Limits of Large and Small Event Counts

R. Ladbury, Member, IEEE

Abstract—We develop a Maximum Likelihood method for
bounding single-event effect (SEE) rates at a particular confidence
level. The method is useful for test planning, reliability estimates
and investigating rare SEE modes and part-to-part and lot-to-lot
variability.

Index Terms—Quality assurance, radiation effects, reliability es-
timation.

I. INTRODUCTION

TRADITIONALLY, the treatment of statistical errors in cal-
culation of rates for single-event effects (SEE) has been

to minimize them by ensuring that cross sections are estimated
with sufficiently large event counts that statistical errors are neg-
ligible. The Electronic Industries Association test procedures
JESD-57 [1] recommend at least 100 events per data point with
possible repetitions at each linear energy transfer (LET) value.
Others [2] have gone further, recommending 1000 events for
LET values where the cross section is 5% of the saturated
value, 400 events when the cross section is 1%-5% of the satu-
rated value and 4 events near threshold ( 1% of the saturated
cross section). Such guidelines ensure that statistical errors are
insignificant in rate calculations, especially when the cross sec-
tion versus LET curve contains several data points.

Unfortunately, achieving such large event counts is not
always feasible, especially with destructive SEE mechanisms
where each data point may represent the destruction of an
expensive microcircuit. In other cases, a disruptive but rare
error mode (e.g., a single-event functional interrupt or SEFI)
may be discovered only during post-irradiation data analysis,
and one must either return to the accelerator for more testing
or estimate the error rate for this mode with poor statistics.
Having a method for fitting data to a Weibull (or other) curve
that takes into account possible Poisson fluctuations on event
counts would allow the analyst to bound the SEE rate at any
given confidence level. It would also be useful for comparing
on-orbit rates (which are usually based on limited statistics) to
calculated rates, detecting lot-to-lot or part-to-part variation,
test planning and design and many other applications.

Here, we report on a Maximum Likelihood (ML) method
for fitting SEE cross section versus LET data to a 4-parameter
Weibull. We assume that for the LET, , SEE counts
fluctuate according to a Poisson distribution about a mean, ,

Manuscript received July 20, 2007; revised October 2, 2007. This work was
supported by NASA’s Electronic Parts and Packaging (NEPP) program and the
James Webb Space Telescope.

The author is with NASA Goddard Space Flight Center, Greenbelt, MD
20771 USA (e-mail: Raymond.L.Ladbury.1@gsfc.nasa.gov).

Digital Object Identifier 10.1109/TNS.2007.910035

which is proportional to a cumulative Weibull distribution. We
select the fit parameters that maximize the likelihood of our
dataset arising due to Poisson fluctuations about the means for
each LET. We have implemented the fitting and analysis rou-
tines described here as Microsoft Excel™ spreadsheets because
Excel is available on most computers and indeed may be the
only data analysis program available on SEE test trips. Imple-
mentation in Excel allows the analyst to look at the implications
of data on the fly and optimize data quality for SEE rate predic-
tion.

II. FITTING SEE DATA AND BOUNDING SEE RATES

When SEE testing yields a null result (that is, no SEE are
seen), calculating an upper bound on the SEE rate for a given
confidence level is straightforward. One assumes that the 0
events observed represents a downward Poisson fluctuation
from the mean at the maximum level allowed by the confidence
interval. Thus, at the 95% confidence level, the upper bound for
the expected number of events when zero events are observed
is 2.9957. (That is, a Poisson distribution with this mean would
have a 5% probability of yielding 0 events.) We obtain the cross
section by dividing by the ion fluence at the highest LET tested.
One can then use a figure-of-merit approach to bound the rate.
[3]

When a cross section versus LET curve has several cross sec-
tion points, bounding the curve for a particular confidence level
is more involved. We use a Maximum Likelihood approach. [4]
SEE counts, , are assumed to vary about some mean value
according to the Poisson distribution

(1)

The mean is proportional to the ion fluence, , and the
SEE cross section, . The cross section is assumed to vary
with ion LET according to a cumulative Weibull function with
4 parameters ( ,

, and , and )

(2)

We define the likelihood based on Poisson probabilities for
our data, as

(3)

and maximize it with respect to the 4 parameters above (here
is the cumulative Weibull function of the given variables).
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TABLE I
SIMULATED SEFI DATA

Fig. 1. Log likelihood ratios determine not only the best-fit (black square) pa-
rameters for the Weibull fit, but also the confidence intervals for these parame-
ters, as shown for this slice through the 95% confidence contour taken for the
best-fit values � = 3:13� 10 cm and LET = 26.

Because is nonlinear in the parameters, we solve the problem
numerically by dividing the parameter space for the solution into
a grid and calculate the likelihood for the value of , ,

, and at each grid point. The routine allows the user to set the
starting point and step size for each parameter so that when one
is close to a solution one can hone in on the best-fit parameters
to arbitrary accuracy. Once an acceptable solution has been de-
termined, one can center on that point and increase the step sizes
of the parameters to determine confidence intervals for the pa-
rameters and otherwise investigate the behavior of the fit while
moving away from the best fit.

As an illustration, consider the idealized data (we use simu-
lated data that fits exactly to a Weibull form to eliminate sys-
tematic errors) given in Table I.

We construct the likelihood for this data and find our best-fit
returns the same parameters that generated the data—

, cm , width, and shape
(see Fig. 1). However, as one moves away from the best-fit

values , the likelihood of parameter values is related to the
likelihood for by

(4)

Here, is the number of parameters for the fit to the data,
and is the chi-squared statistic for probability and
degrees of freedom. This makes it possible to define confidence
contours as well as best-fit values for the fit parameters. The

Fig. 2. The same slice of the 95% confidence contour as in Fig. 1, but assuming
each SEE cross section is based on only one event.

parameter values that yield the highest SEE rate consistent with
a given confidence contour uniquely bound the SEE at the given
confidence level for our data.

We facilitate identification of these worst-case parameters by
taking the values that yield high figure-of-merit SEE estimators.
The figure of merit, [5] FOM, is given by

(5)

where is a constant determined by the radiation environment
and is the LET where the Weibull reaches 25% of its
saturated value:

(6)

Although the FOM approach provides a reasonable approxi-
mation of the SEE rate, its accuracy varies over the parameter
space-especially with onset LET and Weibull shape. For this
reason, we use the FOM to identify 10 promising candidates
for each confidence interval and then select the parameters that
yield the highest SEE rate using the HUP tool from CREME96.
[6], [7]

Using the data in Table I and assuming a geostationary orbit,
the best-fit rate for a GCR solar minimum environment would
be 2.46 , while the 95% CL bounding rate
would be 4.11 . Because of the good statistics, the
95% CL rate is only about 67% higher than the best-fit rate.

If instead of the event counts in column 3 of Table I, we had
based each cross section on only a single observation of the SEE
(as might be the case for an SEL or other destructive test), the
confidence contour would be much broader (see Fig. 2). Fig. 3
shows the ratio of the 95% confidence level (CL) bounding rate
to the best-fit rate as a function of increasing SEE count for each
cross section point (that is, each count being based on 1, 2, 4,
8, 16 and 32 events). As can be seen by the fit to the data, the
bounding rate decreases roughly as the inverse of the number of
events on which the cross sections are based.

III. SIMULATING EFFECTS OF ERRORS

In addition to the fitting routine described above, we devel-
oped a Monte Carlo routine that generated versus LET curves
from Weibulls with known parameters and allowed the event
counts for each cross section point to fluctuate about the mean
or expected values according to Poisson statistics. We then fit the
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Fig. 3. The 95% CL and 99% CL bounding rates for the simulated data in
Table I initially decrease rapidly as the event count for each cross section point
increases. Above about 16 events, the decrease is incremental.

TABLE II
SIMULATED SEE DATA

resulting curves and estimated the parameters of the Weibull that
generated them. Generating a large number (in our case 2500)
of such distributions allows us to determine how Poisson fluc-
tuations affect our ability to determine fit parameters and how
this in turn affects our estimates of best-fit and bounding rates. It
also allows us to investigate how these errors change as we add
additional data or as we change the parameters of our Weibull
generating function. Because it is impractical to calculate thou-
sands of rates using CREME96, here we relied more on FOM
estimates.

As an example, we discuss in detail a simulated
versus LET curve generated for a Weibull with

cm MeVcm mg, and
. The idealized (Poisson mean) values are given in

Table II. We initially based each cross section on a single event
count and generated 2500 curves (sufficient for estimates good
to 2%) with fluctuations. We then fit the curves using our ML
technique and looked at how the fit parameters were distributed
and how this affected the resulting rate calculation.

We also tested whether (4) above provides a reasonable
bound for confidence-level estimates. It is important to test this
assumption, because the use of the distribution presumes

Fig. 4. The logarithm of the ratio of the likelihood for a set of fit parameters to
the best-fit parameters tends to scale as the �2 statistic with degrees of freedom
equal to the number of fit parameters.

Fig. 5. Onset LET, LET , converges rapidly to the correct value as the event
count per cross section point increases.

implicitly that errors on the fit parameters are normally dis-
tributed. Because of the Poisson nature of errors in SEE counts
this cannot be taken for granted.

Fig. 4 shows the distributions of the log of the likelihood ratio
for 1, 2, 4, 8 and 16 events per cross section point. Also shown is
the distribution for 4 degrees of freedom, which does bound
the log likelihood ratios. Thus, (4) is appropriate for bounding
confidence intervals.

Next, we looked at how event count affects errors on the fit pa-
rameters. Fig. 5 shows that the distribution for onset LET from
our fitting method narrows rapidly as the event count for each
cross section increases. Likewise, the Weibull shape parameter,

also converges well with event count, especially for small ,
since this is the range where the shape of the Weibull distribu-
tion changes most rapidly with .

In contrast, cross sections based on small event counts do a
poor job pinning down the and . Fig. 6 shows that for
cross sections based on a single event, the value of found
by the fitting routine can be differ by an order of magnitude from
the real value. Moreover, the width of the distribution of
decreases less rapidly than that for . Errors on the Weibull
width are also high for low event counts. However, while the
errors on cross section and are large for small event counts,
correlations between these quantities decrease their effect on
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Fig. 6. The limiting cross section, � lim, can be off by an order of magnitude
or more when points in the � versus LET curve are based on a single event, and
convergence is slow as event count increases.

Fig. 7. The limiting cross sections and Weibull width parameters returned by
the fitting algorithm tend to be correlated in a manner that decreases errors on
SEE rates even when errors on the � lim and w are large. The 3-D scatter plot
shown here shows the worst correlation—that for cross sections based on only
one event.

TABLE III
CORRELATION BETWEEN � AND w

the rate estimation (see Fig. 7). Table III shows the correlation
between and for increasing event count. This correlation
is understandable, since the fit parameters are constrained by the
mean trend of the points on the versus LET curve.

IV. TEST PLANNING

The foregoing discussion of how statistical errors affect de-
termination of SEE fit parameters and ultimately estimated SEE
rates is useful for planning SEE tests as well as for providing

Fig. 8. The ratio of the best-fit rate differs from the actual rate by less than a
factor of 5, even when each cross section point is based on only a single event.

guidance to flight projects about interpreting SEE test results.
For example, if the data from Table I applied to a destructive
SEE, Fig. 3 indicates that bounding the SEE rate to better than
10 could be time consuming and expensive. Alternatively,
if the hardware could accommodate the higher bounding rate,
testing could be more economical. Thus, the bounding rates can
be used in a manner similar to the one-sided tolerance limits for
the Parts Characterization Criterion (PCC) hardness assurance
methodology [8] for Total Ionizing Dose (TID).

As an example, consider the question of how much the SEE
rate for the data in Table II would increase if we only did half
as much testing. To investigate this question, we carry out the
analysis from Section III again, assuming testing was done only
at 6 LETs rather than 12 (that is, keeping the first, third, fifth,
seventh, ninth and eleventh data points).

Figs. 9–12 shows how this affects errors (as represented by
the standard deviation) on the fit parameters returned by the fit-
ting routine. As expected, halving the number of points in the

versus LET curve increases the width of the distributions for
the fit parameters returned. The effect is most significant for the
width parameter, where the initial standard deviation is larger
than the value for that generated the versus LET curve. The
improvement here is logarithmic with increasing event count,
and the rate of improvement for the 12-point curve is much
better than that for the 6-point curve. The errors on the other
parameters appear to roughly follow a power-law distribution
versus event count.

Fig. 13 shows how the trends seen in the fit parameters affect
the determination of the expected or average rate for the 99%
CL. It is interesting to note that despite the different dependen-
cies of the errors on event count, the dependence of rate on event
count follows a simple power law and that it seems to correlate
best with the total number of events observed summed over all
LET values (that is, the rate for the 12-point curve for events
observed is roughly equal to the rate for the 6-point curve for

events).
In testing a complex part like an SDRAM, it is important to al-

locate beam time efficiently. While it is not possible to predict a
priori what SEE modes a part will exhibit, based on the compli-
cated state machine of the part and past testing of similar parts,
we can anticipate that parts will exhibit SEU at very low LET (of



2117

Fig. 9. The standard deviation on the distribution of LET returned by the
fitting algorithm starts lower and decreases more rapidly as the number of points
in the � versus LET curve increases.

Fig. 10. Standard deviation of the distribution for the Weibull shape returned
by the fitting algorithm as a function of event count for 6-point and 12-point �
versus LET curves.

Fig. 11. Standard deviation of the distribution for the limiting cross section
returned by the fitting algorithm as a function of event count for 6-point and
12-point � versus LET curves.

which the curve in Table II might be typical), Multi-bit upsets
(MBU) and SEFI at higher LET (perhaps following a curve like
that in Table I), and there is a risk of SEL at moderate to high

Fig. 12. Standard deviation of the distribution for the Weibull width returned
by the fitting algorithm as a function of event count for 6-point and 12-point �
versus LET curves.

Fig. 13. The expected 99% WC rates for 12-point and 6-point � versus LET
curves as a function of event count per cross section point.

LET. The tools used here allow us to simulate SEE over these
LET ranges and with a variety of generating parameters for our
idealized Weibulls with a view to optimizing the test plan for
rate prediction. Moreover, once we have some data, we can use
the same tools to run simulations with lower statistics to make
decisions on the fly how to allocate beam time and parts.

V. PART-TO-PART AND LOT-TO-LOT VARIABILITY

Because SEE testing is usually not done for every lot, the
question of variability in SEE rates—particularly for destructive
SEE—is an important and difficult one. The approach outlined
here provides significant simplification: If the confidence con-
tours at confidence level for the two samples overlap, then the
disagreement between the two samples is not significant at the
level .

Commercial parts are a particular concern when it comes to
part-to-part and lot-to-lot variability. BAE Systems carried out
a detailed study of such variability in commercial SDRAMs in
2000–2001. Table IV shows data from this study for SEFI in
two lots of Hyundai 64 Mbit SDRAMs. Since testing for SEFI
is particularly costly, and since sophisticated techniques are re-
quired to mitigate SEFI, a finding that lot-specific test data were
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TABLE IV
SEFI SUSCEPTIBILITY FOR 2 LOTS OF SDRAMS

needed to determine SEFI susceptibility could have significant
consequences for cost, schedule and design.

The best fits to the two lots are different (Lot 1—
MeVcm mg, cm , ,

and corresponding rate 1.1 and Lot 2—
MeVcm mg, cm , ,

and corresponding rate 2.24 ). However, the 50%
confidence contour for each lot overlaps the best-fit parameters
for the other lot, so the disagreement is not significant. On the
other hand, a similar analysis for MBU, for which statistics are
better, does show variation between the lots at a high level of
significance.

VI. DIVIDING A DATASET

Often, low statistics in SEE data result from the discovery of
a rare error mode that threatens an application and for which the
data do not have adequate statistics. This can occur either when
the rare mode is discovered in post-processing of a dataset or
when the mode comes as a surprise and there is not enough time
to gather enough statistics.

An example of the latter occurred during testing of the Analog
Devices OP293 op amp for NASA’s SWIFT Gamma Ray Burst
Telescope. During testing, the OP293 occasionally exhibited
very long transients, some lasting on the order of 1 ms. Because
these long pulses were rare and time was limited, we accumu-
lated only a small sample of such events.

In subsequent discussions, the project determined that the
transients that posed significant concern were those with ampli-
tude over 2 volts and duration over 120 s. Table V shows the
original transient dataset as well as the data for the transients
that posed a significant concern.

The data for the long SET amount to only 11 events, so sta-
tistical errors are significant. Moreover, the data yield a poor fit
to a Weibull and are insensitive to variations in any fit parameter
other than . However, even with the poor fit to a Weibull the
data are inconsistent at the 99% CL with any solution yielding
a rate higher than 1 .

The fact that the versus LET curve gives a poor fit to the as-
sumed Weibull form may mean that systematic errors also con-

TABLE V
LONG SET IN THE OP293 OP AMP

tribute to uncertainties in the rate. In our case, because we have
taken the worst-case rate consistent with our desired confidence
level, the error bars are likely to be larger on the low side than
the high side. We consider the issue of systematic errors in the
next section.

VII. FUTURE WORK

Although we have concentrated here on the effects of Poisson
errors on SEE counts, the techniques discussed here can also be
applied to a variety of other problems, including systematic er-
rors and other sources of random error (e.g., part-to-part vari-
ability, measurement errors, etc.). One important piece of infor-
mation we can already glean is the value of the likelihood for
the best fit to a Weibull. If the likelihood is significantly lower
than would be expected for the number of data points in our
curve, this indicates that the data deviate systematically from
the expected form (e.g., Weibull). In this case, it is prudent to
assume systematic errors contribute more than the usual 2
uncertainty to the rate calculation. One can then combine the
contributions of the systematic errors to those of random errors
discussed above to ensure that the rate calculated for the part is
bounding.

One way to investigate the effects of systematic errors is to
generate data that follow a distribution other than a Weibull
(e.g., a lognormal or even a Cauchy distribution) and look at the
errors that result in the rate. Similar techniques have been dis-
cussed previously for investigation of systematic errors in TID
hardness assurance. [9] Such studies could be carried out with
the routines currently available. Other error types could also be
investigated with relatively minor modifications. Candidates in-
clude the effects of dead time and contamination of one error
mode by another (e.g., contamination of MBU cross sections
by SEFI or control errors).

Unfortunately, standard SEE rate calculation packages such
as CREME96 do not have the facility to calculate SEE rates
based on curve types other than the Weibull, and this compli-
cates analysis of systematic errors based on the form assumed
for the cross section. Also, state-of-the-art CMOS technologies
often deviate significantly from the assumed rectangular paral-
lelepiped (RPP) charge collection geometry, due to device ar-
chitecture (especially at low LET) or due to the importance
of diffusion-collected charge. While such deviations may re-
quire a much more complicated assumed form than the standard
Weibull, techniques such as those described here should prove
amenable to determining the parameters for the assumed form.

Finally, while the current implementation in Excel is easily
portable, some calculations are labor intensive. The current
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method should be easy to implement in a stand-alone computer
program that can carry out more involved analyses.

VIII. CONCLUSION

Although the best way of dealing with statistical errors in SEE
analysis is to base SEE cross sections on large event counts, this
is not always possible. When statistical errors cannot be ren-
dered insignificant, it is important to understand these errors and
how they propagate through the rate calculations. This allows us
to bound SEE rates in a manner that takes these errors into ac-
count. Even where SEE rates are dominated by systematic errors
such as departures from the assumed rectangular parallelepiped
charge collection or the Weibull form for the cross section versus
LET curve, understanding statistical errors facilitates estimation
of systematic errors.

The method described here provides an unambiguous way
of bounding SEE rates at any given confidence level. Such
bounding rates are useful for reliability calculations, for
comparison of on-orbit to estimated rates and for comparing
estimations from different SEE analysts. Other applications
include test planning and optimization, investigations of
part-to-part and lot-to-lot variability and rate estimation for rare
modes discovered during post analysis of the data.

The techniques described here can be generalized to include
systematic as well as random errors. Moreover, the fact that we
have used Maximum Likelihood methods means that the tech-
nique is amenable to Bayesian analysis if we have archival test
data or other information about part performance.
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