ADVISORY ON THE USE OF THIS DOCUMENT The information contained in this document has been developed solely for the purpose of providing general guidance to employees of the Goddard Space Flight Center (GSFC). This document may be distributed outside GSFC only as a courtesy to other government agencies and contractors. Any distribution of this document, or application or use of the information contained herein, is expressly conditioned upon, and is subject to, the following understandings and limitations: - (a) The information was developed for general guidance only and is subject to change at any time; - (b) The information was developed under unique GSFC laboratory conditions which may differ substantially from outside conditions; - (c) GSFC does not warrant the accuracy of the information when applied or used under other than unique GSFC laboratory conditions; - (d) The information should not be construed as a representation of product performance by either GSFC or the manufacturer; - (e) Neither the United States government nor any person acting on behalf of the United States government assumes any liability resulting from the application or use of the information. # UNİSYS Τo W. Boyah Department Code 300.1 K. Sahu 123 7809 Subject > Radiation Report on TSTP Non-Common Buy Part No. JAN2N2608 Interoffice Memorandum PPM-91-424 Date June 19, 1991 Location Lanham Telephone 731-8954 Location Lapham CC. G. Krishnan/311 V. Edson S. Esmacher D. Krus R. Woodward F. Grena/692 K. Ogilvic/692 A radiation evaluation was performed on JAN2N2608 to determine the total dose tolerance of these parts. A brief summary of the test results is provided below. For detailed information, refer to Tables I through IV and Figure 1. The total dose testing was performed using a cobalt-60 gamma ray source. During the radiation testing, eight parts were irradiated under bias (see Figure 1 for bias configuration), and two parts were used as control samples. The total dose radiation steps were 5, 10, 20, and 50 krads. After 50 krads, parts were annealed at 25°C for 24 and 168 hours (cumulative). The dose rate was between 0.2 - 1.7 Krads/hour, depending on the total dose level (see Table II for radiation schedule). After each radiation exposure and annealing treatment, parts were electrically tested according to the test conditions and the specification limits listed in Table III. All (8) parts passed the initial electrical measurements. Parts continued to stay within the specification limits without any significant degradation for all radiation steps up to 50 krads and subsequent annealing up to 168 hours. Table IV provides the mean and standard deviation values for each parameter after different radiation exposures and annealing treatments. Any further details about this evaluation can be obtained upon request. If you have any questions, please call me at (301) 731-8954. ## TABLE I. Part Information Generic Part Number: JAN2N2608 ISTP Non-Common Buy Part Number: JAN2N2608 ISTP Non-Common Buy Control Number: 2083 Charge Number: C14147 Manufacturer: Motorola Quantity Procured: 47 Lot Date Codes: 9046 Quantity Tested: 10 Serial Numbers of 230, 231, 232, 233, 234, 235, 236, 237 Serial Numbers of Control Samples: 228, 229 Part Function: Transistor Part Technology: JFET Package Style: Tin Can TABLE II. Radiation Schedule | EVENTS | DATE | | | | |--|----------|--|--|--| | 1) Initial Electrical Measurements | 04/02/91 | | | | | 2) 5 krads irradiation @ 278 rads/hr | 05/29/91 | | | | | Post 5 krads Electrical Measurements | 05/30/91 | | | | | 3) 10 krads irradiation @ 278 rads/hr | 05/30/91 | | | | | Post 10 krads Electrical Measurements | 05/31/91 | | | | | 4) 20 krads irradiation 0 151 rads/hr | 05/31/91 | | | | | Post 20 krads Electrical Measurements | 06/04/91 | | | | | 5) 50 krads irradiation @ 1667 rads/hr | 06/04/91 | | | | | Post 50 krads Electrical Measurements | 06/05/91 | | | | | 6) 24 hour annealing | 06/05/91 | | | | | Post 24 hr Electrical Measurements | 06/06/91 | | | | | 7) 168 hour annealing | 06/05/91 | | | | | Post 168 hr Electrical Measurements | 06/12/91 | | | | ### Notes: - 1) All parts were radiated under bias at the cobalt-60 gamma ray facility at GSFC. - 2) All electrical measurements were performed off-site at 25°C. - 3) Annualing performed at 25°C under bias. Table III. Electrical Characteristics of JAN2N2608 | Other Conditions | WÏ <u>N</u> | MAX | | | |---|---|---|--|--| | $v_{GS} = 30 \text{ v, } v_{DS} = 0$ | 0.0 nA | 10.0 nA | | | | $V_{GS} = 15 \text{ V}, V_{DS} = 0$ | 0.0 nA | 7.5 nA | | | | $I_G = 1 \mu A$, $V_{DS} = 0$ | 30.0 V | <u> </u> | | | | $v_{GS} = 0$, $v_{DS} = -5$ V | -1.0 mA | -5.0 mA | | | | V_{DS} = -5 V, I_{D} = -1 $\mu \Lambda$ | 0.75 V | 6.0 V | | | | | $V_{GS} = 30 \text{ V}, V_{DS} = 0$ $V_{GS} = 15 \text{ V}, V_{DS} = 0$ $I_{G} = 1 \mu A, V_{DS} = 0$ $V_{GS} = 0, V_{DS} = -5 \text{ V}$ | $V_{GS} = 30 \text{ V}, V_{DS} = 0$ 0.0 nA
$V_{GS} = 15 \text{ V}, V_{DS} = 0$ 0.0 nA
$I_{G} = 1 \mu A, V_{DS} = 0$ 30.0 V
$V_{GS} = 0, V_{DS} = -5 \text{ V}$ -1.0 mA | | | TABLE IV: Summary of Electrical Measurements after Total Dose Exposures and Annealing for JAN2N2608 1/ | | | | | | | Total Dose Exposure (krads) | | | | | | | | Annealing | | | | |---------|----|--|---------------|------|------|-----------------------------|----------|-----------|-----|-------------|------|-------|-----|-----------|-----------|---------|-----------| | | | | Initials | | lals | 5 | | 10 | | 20 | | 50 | | 24 hrs | | 168 hrs | | | Paramet | | spec.
min | Limits
max | mean | sđ_ | mean | вĊ |
 mean | ಕರೆ | mean | sd | mean | sd | mean | sd. | mean | sd
.01 | | | nA | 0 | 10 | .20 | .01 | ,22 | .02 | .22 | .02 | .21 | .01 | .22 | .02 | .22 | <u></u> 1 | | | | IGSS1 | | | | I | ACE. | .02 | .01 | .02 | .01 | .02 | . 01 | √,0.3 | .01 | 0.2 | .01 | . 02 | .01 | | IGSS1 | nA | 0 | 7.5 | .01 | .005 | 9 (397) 1 - 11 | <u> </u> | | | P | | P | | P | | P | | | VBRGSS | v | 30 | - | Р | | . P | | P | | | | 2.3 | .7 | 2.3 | .7 | 2,2 | | | IDSS | mA | 1.0 | 5.0 | 2.2 | 0.8 | 2.3 | . 7 | 2.3 | .7 | 2.4 | .7_ | | | 2.0 | 3 | 1.9 | | | VGSoff | | .75 | 6.0 | 2,9 | . 3 | 2 0 | 3 | 2.0 | . 3 | 2.7 | 2.1 | Z 0 | | 19280. | 1 | 1 | I | ### Notes: 1/ The mean and standard deviation values were calculated over the eight parts irradiated in this testing The control samples remained constant throughout the testing and are not included in this table. Figure 1: Radiation Bias Circuit for JAN2N2608