The Radiation Environment Radiation Effects

- Total Ionizing Dose (TID)
 - Trapped Protons & Electrons
 - Solar Protons
- Single Event Effects (SEE)
 - Protons
 - Trapped
 - Solar
 - Heavier Ions
 - Galactic Cosmic Rays
 - Solar Events
 - Neutrons

Total Ionizing Dose

- Cumulative long term ionizing damage due to protons & electrons
- Effects:
 - Threshold Shifts
 - Leakage Current
 - Timing Skew
 - Functional Failures
- Can reduce with shielding
 - Low energy protons
 - Electrons

Single Event Effects

- Event caused by a single charged particle
 - Heavy ions
 - Protons for some devices
- Effects:
 - Non-destructive: SEU, SET, MBU, SEBE, SHE
 - Destructive: SEL, SEGR, SEB
- Severity is dependent on
 - type of effect
 - system criticality
- Shielding has little effect
Displacement Damage
- Cumulative long term non-ionizing damage due to protons, electrons, and neutrons
- Effects
 – Production of defects which results in CTR degradation
 – Optocouplers, solar cells, CCDs, linear bipolar devices
- Shielding has some effect - depends on location of device
 – Can eliminate electron damage
 – Reduce some proton damage

REA/SRPO Objectives
- The objectives of the REA/SRPO are two-fold:
 – To provide NASA customers with critical support in the area of radiation hardness assurance (RHA), and,
 – To support NASA spacecraft designers and technology developers in the radiation evaluation of new and emerging technologies as well as radiation models and tools

Flight Project RHA
- Providing lead radiation engineer support to flight missions;
- Definition of mission radiation environment, both external to and internal to the spacecraft;
- Development of project specifications and requirements;
- Evaluation of component list for radiation concerns including recommendations for testing and/or alternative device selection;
- Radiation characterization of flight components;
- Calibration of flight instruments and detector technologies;
- Collaboration with spacecraft designers and system engineers on evaluating the system impact of radiation issues as well as mitigative options; and,
- Investigation of RHA issues that impact flight designs or are radiation-specific issues such as test methodology or dosimetry.

REA/SRPO Applied Research
- Provides characterization of new and commercial microelectronic and photonic technologies;
- Evaluates emerging leading edge microelectronic and photonic technologies;
- Develops models, characterization methods, and predictive tools for microelectronic and photonic technologies;
- Evaluates in-flight performance of microelectronic and photonic technologies;
- Develops radiation flight experiments and instrument monitors to evaluate radiation issues, to support technology developers, and to determine the radiation environment as it pertains to NASA designers and models;
- Supports flight opportunities for radiation flight experiments;
- Evaluates radiation environment models and determines applicability to NASA as well as development of new models; and,
- Supports technology developers in improving their products for radiation characteristics.
What is the Electronics Radiation Characterization (ERC) Project?

- A project under the NASA Electronic Parts and Packaging (NEPP) Program
 - Ken LaBel, Project Manager
 - Chuck Barnes (JPL), Deputy Project Manager
- Provides radiation evaluation of cross-cutting technologies
 - Examples: COTS, emerging microelectronics, photonics
- Provides guidelines for technology usage
 - Example: optocoupler usage
- Supports radiation-specific issues to provide increased reliability and reduced costs
 - Example: radiation test methods

ERC’s Underlying Goal

- Aid NASA designers to meet *their challenges* such as
 - Performance
 - Reliability
 - Resources

ERC Tasks for FY00

- 24 GSFC Tasks
 - Many are joint with JPL
 - Tasks include
 - RADHOME Website
 - Emerging Microelectronic Technologies
 - SiGe, Ferroelectrics
 - Commercial Microelectronics
 - ADCs, DACs, DC-DC Converters, Memories
 - Flight Data Analysis
 - Optocouplers
 - Commercial Fiber Data Links
 - Radiation Impact on Reliability

Defense Threat Reduction Agency’s (DTRA) Radiation Tolerant Microelectronics (RTM) Program

- Ken LaBel is program manager for NASA
 - Includes JPL tasks
- Tasks include
 - Development of fiber optic predictive tool
 - Characterization of Commercial Non-Volatile Memory Technologies
 - Proton Irradiation Test Guidelines
 - Radiation Effects in Optocouplers
 - SEE Response in SiGe and Other Emerging Technologies
 - Single Event Latchup (SEL) Reliability Impact
Orbiting Technology Testbed Initiative (OTTI)

- Space Science (Code S) Effort
 - Potentially part of Living With a Star (LWS) or New Millenium Program (NMP)
- Four Objectives
 - Technology Validations and Demonstrations
 - Technology Development
 - Models, Databases, Guidelines, Definitions
 - Flight Experiments
 - Enable operations in high radiation environments
 - Science Data Link

OTTI - GSFC Participation

- GSFC is likely the lead center for OTTI
- Janet Barth
 - Link to science team and LWS formulation
 - Environment models and tools
 - Possible lead for OTTI
- Ken LaBel
 - Link to technology experiments
 - Engineering interface

Flight Experiments

- Microelectronic and Photonics Testbed (MPTB)
 - Ken LaBel (and a cast of 1000s)
 - AS1773 Fiber Optic Bus
- Space Technology Research Vehicle -1d (STRV-1d)
 - Optocouplers, state-of-the art digital electronics, pulse height analyzer (PHA) instrument, dosimetry
 - Co-PI with Aerospace Corp. on Analog SEE
- Others
 - CRUX, HOST, commercial airplane
 - Engineering data from SAMPEX, TOMS/Meteor, SeaStar, XTE, TRMM, et al