Guidelines for Design and Test of a Built-In Self Test (BIST) Circuit For Space Radiation Studies of High-Speed IC Technologies

Martin A. Carts
mcarts@pop500.gsfc.nasa.gov,
P.W.Marshall, R.Reed, S.Curie, B.Randall, K.LaBel,
B.Gilbert, E.Daniel

Support from, and thanks to:

• NASA Electronic Parts and Packaging (NEPP) Program
• Defense Threat Reduction Agency Radiation Hardened Microelectronics Program

Presented by Marty Carts at the 2006 Single Event Effects Symposium, April 10, 2006 in Long Beach, CA.
The BIST Guidelines Document

- *This presentation introduces the detailed document by the same name.*

- *The BIST Guidelines document will be available on the Radiation Effects and Analysis Group’s website at NASA GSFC:*

 http://radhome.gsfc.nasa.gov
Outline

• Introduction
 – BIST
 – High speed single event testing
 – Sources of high speed single event test structures
• Aspects of a high speed BIST circuit
• CREST serial shift register
• SerDes Serializer/Deserializer
• Summary comments
Built-In Self Test (BIST)

- **Build some or all diagnostic circuitry into the device itself**
- **BIST exists all over:**
 - Parametric Analyzers
 - Handheld DMM (Auto-zeroing)
 - Computers, (RAM testing on Boot)
 - Radio Stations (Broadcast Test Signal to Monitoring Stations)
 - Integrated Circuits (SerDes)
- **BIST hasn’t been implemented in many single event test applications (yet)**

Presented by Marty Carts at the 2006 Single Event Effects Symposium, April 10, 2006 in Long Beach, CA.
High Speed Single Event Testing

- Single event susceptibility tends to rise with increasing frequency
- Hardening techniques complicate susceptibility vs frequency behavior
- The nature of error events changes with frequency
- Bit Error Rate Test (BERT) Equipment
 - Generator, Analyzer

![Diagram of BERT testing process]

- Geometric Bandwidth effectively decreases with increasing F_{max}
- Cost Rises quickly with increasing F_{max}
Sources of High Speed Single Event Test Devices

- **Specific Integrated Circuits**
 - Requires significant external equipment, including BERT
 - Not optimized for results generation

- E.g. AD8151 fabric switch (see Buchner, et.al 2003 RADECS)
Sources of High Speed Single Event Test Devices

- **IC fabrication test structures**
 - Single transistors, capacitors, inverters, flipflops, shift registers
 - May not be optimized for high speed operation
 - May not optimized for large area data collection
 - Still require equipment of equal or better speed

- **High speed BIST test structures**
 - Allow testing independent of BERT equipment
 - Designed to run at device’s Fmax, even beyond available test equipment
 - Designed to gather the right data
 - Available early in the process lifetime
Outline

• Introduction
 – BIST
 – High speed single event test
 – Sources of high speed single event test structures
• Aspects of a high speed BIST circuit
• CREST serial shift register
• SerDes Serializer/Deserializer
• Summary comments
Aspects of H.S. BIST Device

- Test Structure
 - Primary target for single events
 - Type per requirements (science data or application specified)
 - Test Structure Types
 - Shift register
 - SerDes
 - Buffers
 - PLL
 - Others?
Aspects of H.S. BIST Device

- **Error Detection and Data**
 - Choice closely coupled to Test Structure
 - As simple as possible
 - Complexity will tend to cloud results
 - Allows maximization of test structure area
 - Increases probability of 1st pass design success
 - Example:
 - Test Structure
 - Shift Register (with its clock tree)
 - 127 bits long
 - Error Detection
 - XOR Difference Detector at bit 0 and bit 127
 - Data
 - PN7 \((2^7-1) \text{ PRBS} \)
 - (Any repeating 127 bit pattern would do)
Aspects of H.S. BIST Device

- Test structure, error detection, data highly coupled. Example:
 - Test Structure = 127 bit Shift Register (w/clock tree)
 - Error Detection = XOR gate
 - Data = PN7 (2^7-1 PRBS but any repeating 127 bit pattern would do)
Aspects of H.S. BIST Device

• Results Selection
 – Assure access to the required data
 – Opportunity (and last chance!) to optimize data gathered for test goals
 – Treat encoding/decoding carefully
Aspects of H.S. BIST Device

- Results Storage
 - It’s impractical to save *all* data
 - Upon an error event, the Results Set must be stored until it can be collected
 - Shift register (CREST) example:
 - Must accommodate delay in clock-stop circuit
 - (Results Selection: Collect E Data too!)

![Diagram of the test structure with 127-bit long shift register and data-saving FIFO]
Aspects of H.S. BIST Device

• Self-Contained High Speed Circuitry
 – It is a PAIN to handle high speed signals
 • Loss/phase dispersion cabling issue
 • Signal timing issue
 • Signal conditioning issue
 – Generate data on-die if possible
 – Generate clock on-die if possible!
 – Allow “low” speed data outloading
Outline

• Introduction
 – BIST
 – High speed single event test
 – Sources of high speed single event test structures
• Aspects of a high speed BIST circuit
• CREST serial shift register
• SerDes Serializer/Deserializer
• Summary comments
Serial Shift Register Example

- CREST was actually designed, built and tested. See:

 “Autonomous Bit Error Rate Testing at Multi-Gbit/s Rates Implemented in a 5AM SiGe Circuit for Radiation Effects Self Test (CREST),”

P. Marshall, et. al

Serial Shift Register Example

The Test Structure (127 bit long shift register)

Data-saving FIFO

The Error Detection and Latch Circuitry

Presented by Marty Carts at the 2006 Single Event Effects Symposium, April 10, 2006 in Long Beach, CA.
Serial Shift Register Example

CREST Clock Control Circuit
CREST Die Wirebonded to PCB
Outline

• Introduction
 – BIST
 – High speed single event test
 – Sources of high speed single event test structures
• Aspects of a high speed BIST circuit
• CREST serial shift register
• SerDes Serializer/Deserializer
• Summary comments
Serializer/Deserializer Example

- Serial link is economical
- Serializes N bit wide parallel system data
- Serial output rate >= N times parallel rate
- Deserializer restacks data into parallel form
- Two PLLs involved
- BIST frequently already included...
Serializer/Deserializer Example

- BIST additions shown in red
- 2 options for high speed BIST:
 - Loop back in parallel path
 - Loop back in serial path
- Parallel loop back allows for correlation to BERT testing
- Serial loop back allows lower speed testing
Serializer/Deserializer Example

- **SerDes Issues:**
 - PLL hits--Loong stretches of garbled data.
 - Encoder/Decoder hits--Garbled data
 - Encoder hits--Deserializer lock loss
 - Decoder hits--Word Sync Reacquisition time

- **BIST Aspects**
 - Test structure/Data/Error detector
 - Results/Results Storage

Presented by Marty Carts at the 2006 Single Event Effects Symposium, April 10, 2006 in Long Beach, CA.
• SerDes Issues
 – Complexity--Many diverse functions
 – PLLs will have different error signatures in addition to other circuitry
 – Possible total event data loss due to complexity
 – Latency due to PLL settings
 – Word latency due to Serializer, Deserializer, possible parallel input FIFO
 – Test structure/Data/Error detector
 – Results/Results Storage
Summary

• BIST for high speed single event test is the best approach for
 – Wide bandwidth testing (above ~12 GBPS)
 – Testing in absence of expensive equipment

• BIST approach allows for test optimization
 – Die area devoted to data collection
 – Test Results.

• BIST approach has been proven in 5AM SiGe and the
• Lessons learned and extrapolated wisdom are summarized in NASA document,

Guidelines for Design and Test of a Built-In Self Test (BIST) Circuit for Space Radiation Studies of High-Speed IC Technologies
at
http://radhome.gsfc.nasa.gov

Presented by Marty Carts at the 2006 Single Event Effects Symposium, April 10, 2006 in Long Beach, CA.