Heavy Ion Testing of Freescale Nano-Crystal Nonvolatile Memory*

T.R. Oldham,¹ M. Suhail,² E. Prinz,² P. Kuhn,² H. Kim,³ and K.A. LaBel⁴

1. QSS Group Inc.
2. Freescale Semiconductor, Inc.
3. Jackson & Tull Aerospace, Inc.
4. NASA GSFC

Non-volatile Memory Technology Symposium
15-17 Nov 2004

* Sponsored by NASA Electronic Parts and Packaging (NEPP) program, Defense Threat Reduction Agency, and Freescale Semiconductor
Outline

• Introduction
• Description of Devices
• Test Procedure
• Experimental Results
• Analysis and Discussion
• Conclusions
Introduction

• Floating Gate (FG) non-volatile memories (NVM) are widely used in space systems
 – Commercially available

• However,
 – FG has been shown to be sensitive to ionizing radiation
 – Concern that FG cannot be scaled below 100 nm for reliability issues

• Nanocrystal (NC) memory has the potential to
 – Scale <<100 nm with increased reliability at 90 nm and below, as well as,
 – Increase radiation resistance
Non-Volatile Memory Technology Symposium (NVMTS) Nov 15-17, 2004, Orlando FL
Nanocystal Storage for Embedded NVM

- **Write/Erase Voltage Reduction**
 - ±6...±7V write/erase voltages instead of ±9V
 - 50% periphery area reduction
- **No SILC (stress induced leakage current)-related extrinsic reliability issue**
- **No gate or drain coupling effect**
- **Process Simplicity**
 - Floating gate: adds 6-11 masking steps
 - Nanocrystal: adds 4 masking steps
Description of Devices

- **Write by CHE (channel hot electron) injection**
- **FN (Fowler-Nordheim) Erase**
- **Read by detecting V_T (threshold voltage) difference** (zero V_T is about 2V greater than one V_T)
- **Nominal 6V supply**
Freescale Nanocrystal Test Chip
Experimental Procedure

- Devices under test (DUTs)
 - 130 nm CMOS, part of 90 nm development process
 - Nanocrystal
 - 6V Vdd
 - 0.1V Vt margin
 - FG
 - (9V Vdd)
 - ~2V Vt margin

- Exposures
 - Heavy ion at Texas A&M University (TAMU) Cyclotron
 - 15 MeV/nucleon cocktail
 - Naval Research Laboratories’ Pulsed laser

- Test modes
 - Static, dynamic read, dynamic write, dynamic erase tests

- All tests performed at room temperature and nominal Vdd, frequency ~25 kHz
Experimental Apparatus

DUT Board

Buffers & Drivers

DUT

Address & Control

Dout

Mode Select

Hewlett Packard
6624A & 6626A
DC Power Supplies

GPIB

Agilent
34907A
Digital I/O Module

GPIB

National Instrument PXI Controller System

National Instrument PXI 6534
Digital I/O Module

Handshake

National Instrument PXI 6533
Digital I/O Module

GPIB
Heavy Ions Used at TAMU

<table>
<thead>
<tr>
<th>Ion</th>
<th>E (MeV)</th>
<th>LET (MeV/mg/cm²)</th>
<th>Range (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>497</td>
<td>8.7</td>
<td>175</td>
</tr>
<tr>
<td>Kr</td>
<td>916</td>
<td>29.3</td>
<td>117</td>
</tr>
<tr>
<td>Xe</td>
<td>1299</td>
<td>53.8</td>
<td>102</td>
</tr>
<tr>
<td>Au</td>
<td>2247</td>
<td>85.0</td>
<td>118</td>
</tr>
</tbody>
</table>
Heavy Ion Results - Nanocrystal

- Errors observed in all test modes
 - All errors appear to be static errors, even in dynamic tests
 - Cell values changed and remained at values until re-written
- Fewer errors observed in write and erase tests
 - Errors are being overwritten during exposures
- All errors are zeroes turned into ones (loss of stored electrons)
- Error rate depends on voltage margin
 - 0.1 V used for this test
 - Production chip would have >> margin
- High current state observed, suggestive of latchup, but parts remained fully functional
- No single event functional interrupts (SEFIs) noted
- Limited test on FG
 - Linear Energy Transfer (LET) of 29 Mev*cm²/mg: no Single Event Effects (SEE) observed
Read Errors – Nanocrystal Heavy Ion

![Graph showing cross section vs. LET (MeV·cm²/mg)]
Write/Read Errors – Nanocrystal Heavy Ion

![Graph showing cross section vs. LET (MeV·cm²/mg)]

Non-Volatile Memory Technology Symposium (NVMTS) Nov 15-17, 2004, Orlando FL
Write/Erase/Read Errors – Nanocrystal Heavy Ion

![Graph showing cross section vs LET](image)

Non-Volatile Memory Technology Symposium (NVMTS) Nov 15-17, 2004, Orlando FL
Laser Test Results – Nanocrystal and FG

- No bit errors observed
 - Laser will not produce ionization in SiO₂
- No errors observed in control circuits on NC parts
- Apparent latchup in FG parts
 - Possibly due to higher voltages applied
 - Devices could not be erased after exposure, including ultraviolet (UV) erase
Threshold Voltage Distribution

Vt distributions Pre & Post Radiations

- Pre-Radiation
- Post-Radiation

Exposure was 10^7 Kr ions/cm2, LET=29

Non-Volatile Memory Technology Symposium (NVMTS) Nov 15-17, 2004, Orlando FL
Discussion

• Charge loss, from observed V_T shifts, is 1-2 orders of magnitude greater than positive charge deposited by ion
 – Micro-dose (alone) not sufficient to explain observed charge loss

• Cellere et al. (IEEE TNS Dec 2002) reported similar results for FG cells—presented three possible models, but found problems with all three
 – Models should not apply to NC arrays, even if problems were resolved for FG—single conducting defect should not drain charge from whole array

• Underlying mechanisms not yet explained
Conclusions

• Nanocrystal memories are promising for space applications
• Bit error rate is generally better than previous reports for FG flash NVM
• Only static errors (loss of electrons) observed
• No SEFI
• No unambiguous evidence for latchup