Mechanisms and Temperature Dependence of Single Event Latchup Observed in a CMOS Readout Integrated Circuit from 16-300 K

Cheryl J. Marshall1, Paul W. Marshall2, Raymond L. Ladbury1, Augustyn Waczynski1, Rajan Arora3, Roger D. Foltz1, John D. Cressler3, Duncan M. Kahle1, Dakai Chen4, Gregory S. Delo6, Nathaniel A. Dodds5, Jonathan A. Pellish1, Emily Kan1, Nicholas Boehm6, Robert A. Reed5, and Kenneth A. LaBel1

1NASA GSFC, \\
2NASA GSFC Consultant \\
3Georgia Institute of Technology \\
4MEI Technologies, Inc. \\
5Vanderbilt University \\
6Global Science and Technology, NASA-GSFC

Funding from NASA NEPP, IRAD, & flight projects.

For inquiries: cheryl.j.marshall@nasa.gov

Presented by Cheryl Marshall, 2010 NSREC, Denver, CO, July 20, 2010
• Review of classical electrical and particle-induced LU in CMOS

• 1st observation of ‘anomalous’ electrical latchup (LU) from ~4 - 50 K by Deferm et al.

• Temperature dependent electrical LU results – 130 nm test structure

• Heavy ion SEL experiment on 0.5 µm ReadOut Integrated Circuit (ROIC)

• Discussion of particle-induced SEL mechanisms at 20 K
Cross coupled parasitic bipolar transistors inherent to CMOS Technology

- Current produced by ion strike can forward bias the base emitter junction and begin the SEL sequence
- Key device parameters for all temperatures:
 - Well & substrate resistivities
 - Well & substrate contact proximity
 - Minimum n+ - p+, or cathode-anode spacing

Presented by Cheryl Marshall, 2010 NSREC, Denver, CO, July 20, 2010

After Johnston, TNS, 1996 & Bruguier and Palau, TNS, 1996
• Electrical and particle-induced LU susceptibilities decrease because:
 • Well & substrate resistances decrease due to increase in mobility and carrier freeze-out.
 • V_{BE} required to support a given collect current increases.
 • Parasitic bipolar gain product is decreasing exponentially with temperature (and also via temperature dependence of the bandgap narrowing in the emitter).
 • Often has little quantitative effect on LU characteristics.
 • Below ~75-100 K, regenerative feedback is no longer possible, since $\beta_{nnp}\beta_{pnp} < 1$ for the two parasitic BJT common-emitter current gains.
Electrical LU is observed below ~ 50 K

- Deferm et al. suggest shallow-level impact ionization as the source of an exponential increase in free carriers once a threshold field is reached in the internal n- and p- regions of the parasitic pnpn structure, resulting in significant current flow.

- LU condition becomes:

\[\beta_{n_{pn}}\beta_{p_{np}} > (M_nM_p)^{-1} \]

where \(M_n \) & \(M_p \) are the shallow level impact ionization coefficients (or rates) for electrons & holes

Gain product \(\sim 1 \)

After Deferm et al., Cryogenics 30, 1990.

Presented by Cheryl Marshall, 2010 NSREC, Denver, CO, July 20, 2010
Temperature Dependence of Key LU Parameters

Electrical LU measurements via anode injection
130 nm IBM pn-pn test structure

- Note changes ~50 K where shallow level impact ionization becomes important.
- Triggering current and voltages required to initiate LU
 - Increase monotonically with decreasing temperature
- Vertical pnp gain much larger than for lateral npn

Gain product ~ 1

Presented by Cheryl Marshall, 2010 NSREC, Denver, CO, July 20, 2010
Dominant Impurity Ionization Mechanisms vs Temperature

After Simoen et al., “Charge transport in a Si resistor at liquid –He temperatures,” JAP 68 (8), 1990.

Presented by Cheryl Marshall, 2010 NSREC, Denver, CO, July 20, 2010
Dominant Impurity Ionization Mechanisms vs Temperature

- Shallow-level impact ionization (SLII) is field assisted ionization of frozen-out shallow dopants.
- SLII can lead to significant charge multiplication when modest electric field threshold is reached and excess carriers are present.

After Simoen et al., “Charge transport in a Si resistor at liquid –He temperatures,” JAP 68 (8), 1990.

Presented by Cheryl Marshall, 2010 NSREC, Denver, CO, July 20, 2010
Heavy Ion SEL Test Description of 0.5 µm ROIC

- AMI C5 bulk process on lightly doped p-substrate
- ROIC fully functional during testing (4 channels at 500 kHz).
- Four key voltages & associated currents monitored every 25 µs
 - Real time visibility on all supplies
 - \(V_{pd} \) (logic portion of readout circuitry) was only supply to latch
- ROIC health monitored throughout the test.

He cryostat in front of TAMU beam line. Five ROICs tested.

Presented by Cheryl Marshall, 2010 NSREC, Denver, CO, July 20, 2010
Temperature Dependence of Hard SEL Events

• Kr ions @ 60°:
 \[\text{LET}_{\text{eff}} = 64 \text{ MeVcm}^2/\text{mg} \]
 and \(R_{\text{proj}} = 43 \mu\text{m} \)

• Cross sections comparable for 20 K & 300 K

• Very modest temperature dependence 200-300 K

• Holding voltages \((V_H) \):
 - 4.1 – 5.6 V \((T \leq 24 \text{ K}) \)
 - 1.9 – 2.8 V \((T \geq 135 \text{ K}) \)

• Self quenching high current events observed in both transition regions

Presented by Cheryl Marshall, 2010 NSREC, Denver, CO, July 20, 2010
Typical Hard SEL and Self-Quenching High Current Event Signatures

- Holding voltage = 2.8 V
- Note self quenching event had same current level as hard SEL event (~20 mA)

Presented by Cheryl Marshall, 2010 NSREC, Denver, CO, July 20, 2010
ROIC Latchup Behavior at 20 K

- Diffusion from substrate is important
- No SEL observed for $\text{LET}_{\text{eff}} = 40$ & $R_p \sim 4-5 \, \mu m$
 - Ar-40 ion deposited 28 MeV
 - Only self-recovered high current events
- Ar-40 ion delivered 80 MeV within 10 µm
 - Penetrated the junction region
 - Both self-recovered and hard SEL events

$\text{LET}_{th} \sim 3.3$ at 20 K, but $15 < \text{LET}_{th} < 20$ at 300 K

‘Saturated’ cross section 2-3 X higher at 300 K
Shallow-Level Impact Ionization (SLII) Mechanism

- Free carriers produced by ion strike initiates exponential growth in free carriers in internal p- and n-region of parasitic pnpn structure that meet the modest electric field threshold for SLII (E_{th})

- The high V_H we observed are expected for 1st order shallow level impact ionization LU model, and are comparable to those observed by Deferm et al.
 - $V_H = 2 V_{bi} + (E_{th}) / A-C$ spacing
 - $V_H \sim 4 - 5$ V for Deferm et al. at 4 - ~50 K

- Our data clearly indicate importance of lightly doped p-substrate
 - SEL cross section reduction striking for $R_p < 30$ µm at 20 K
 - Slight temperature dependence from 200-300 K
 - Changes in R & V_{BE} with temperature decrease SEL probability
 - Charge collection efficiency may be greater at lower temperatures
 - Longer diffusion length and lower recombination efficiency

Presented by Cheryl Marshall, 2010 NSREC, Denver, CO, July 20, 2010
Conclusions

• Cryogenic SEL is indeed possible and represents a new qualification concern.
 • Shallow-level impact ionization is a very plausible mechanism to provide a source of carriers below roughly 50 K.
 • NASA requires cryogenic operation for ROICs, ASICs and other CMOS devices for IR sensor applications as well as extreme environments.
• Very little data exists for ion-induced SEL below room temperature
 • We see a significantly lower SEL threshold at 20 K compared to room temperature.
 • ‘Saturated’ cross section is ~2 - 3 higher at 300 K.
 • Data in the ‘classical’ regime from 100 – 300 K show SEL behavior beginning at 135 K.
 • Very modest temperature dependence of the SEL cross section from ~200 – 300 K.
 • Similar results for 2nd ROIC on epi from different vendor.
 • ‘Test as you fly’

Presented by Cheryl Marshall, 2010 NSREC, Denver, CO, July 20, 2010