# Test Report for Heavy Ion Testing of the MSK5059RH Step Down Switching Regulator 

PI: Dakai Chen<br>TE: Ted Wilcox, James Forney<br>MEI Technologies, c/o NASA-GSFC, Greenbelt, MD

Test Date: December $5^{\text {th }}$, 2010

## I. Introduction

This purpose of this test is to examine the heavy-ion induced single event effects (SEE) susceptibility of the MSK5059RH step down switching voltage regulator from M. S. Kennedy Corporation. The tests will be carried out at the Texas A\&M University Cyclotron SEE Test Facility.

## II. Device Description

The MSK5059RH is a radiation hardened 500 KHz switching regulator controller capable of delivering up to 4.5A of current to the load. The output voltage is adjustable down to 1.21 V . Typical applications include point of load DC/DC converters for satellite power supplies, microprocessors, FPGAs, and ASICS. Table 1 displays the part and test information. Figure 1 shows the pin configurations for the device.

Table I. Test and part information.

| Generic Part Number | MSK5059RH |
| :--- | :--- |
|  | MSK |
| Package Marking | $5059 R H G$ |
|  | Be0 |
|  | 51651 USA |
| Manufacturer | M. S. Kennedy Corp./Linear Tech. die |
| Lot Date Code (LDC) | To be determined |
| Quantity tested | 1 to 2 |
| Part Function | Step down switching regulator |
| Part Technology | BiCMOS |
| Package Style | Hermetically sealed flat-16 |
| Test Equipment | Power supply, digital oscilloscope, |
|  | multimeter, and computer |



Figure 1. Pin configuration for the MSK5059RH.

## III. Test Facility

Facility: Beam Energy: Flux:

Fluence:
Ions:

Texas A\&M University Cyclotron SEE Test Facility $15 \mathrm{MeV} / \mathrm{amu}$ tune $1 \times 10^{3}$ to $1 \times 10^{5}$ particles $/ \mathrm{cm}^{2} / \mathrm{s}$ (adjust according to the number of transients observed)
$\leq 1 \times 10^{7}$ ions/cm ${ }^{2}$
Shown in Table II

Table II. Heavy-ion information.

| Ion | Initial LET in air <br> $\left(\mathbf{M e V} \cdot \mathbf{c m}^{\mathbf{2} / \mathbf{m g})}\right.$ | Range in Si <br> $(\boldsymbol{\mu m})$ |
| :---: | :---: | :---: |
| Ne | 2.6 | 316 |
| Ar | 8.0 | 229 |
| Kr | 26.6 | 170 |
| Xe | 53.9 | 156 |

## IV. Test Methods

Figure 2 shows the circuit diagram schematics for the application circuit. The output voltage ( $\mathrm{V}_{\text {out }}$ ) is fixed at 3.3 V . We added two additional capacitors ( $100 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ ) in parallel at the output, externally to the board, to improve output stability. Nevertheless, we observed oscillation noise at the output, which consists of two components: one with frequency on the scale of the regulator switching frequency ( 500 kHz ), and the other with a much higher frequency element ( $\sim 14 \mathrm{MHz}$ ). The high frequency component may be caused by the load transient frequency. The magnitude of the oscillation of the more significant low frequency component was approximately 0.5 V peak-to-peak. Circuit layout considerations, such as creating a ground plane and/or placing the output capacitors closer to the device leads, may decrease the magnitude of the output noise and improve stability. Figure 3 shows a schematic of the test setup. The oscilloscope is connected to the device output to monitor SETs.

Figure 4 shows a photograph of the setup inside of the irradiation chamber at TAMU. We note that we clipped on a rectangular copper plate as an additional heat sinking element.


Figure 2. Application circuit diagram.


Figure 3. Block diagram of the testing setup.


Figure 4. Photograph of the test setup inside of the irradiation chamber.

## Test Conditions

Test Temperature:
Operating Frequency: Power Supply:
Output Load:
Output Voltage:
Angles of Incidence: Parameters:

Room temperature to $100^{\circ} \mathrm{C}$
DC
$V_{\text {in }}=7 \mathrm{~V}$
$\mathrm{I}_{\text {out }}=100 \mathrm{~mA}, 0.5 \mathrm{~mA}, 1 \mathrm{~A}$, and 1.5 A
$\mathrm{V}_{\text {out }}=3.3 \mathrm{~V}$
$0^{\circ}$ (normal), $60^{\circ}$, and $90^{\circ}$

1) Input supply voltage
2) Feedback voltage
3) Output current
4) Output voltage

8

## V. Test Results

We observed perturbations to the output that were caused by increased fluctuations of the output oscillation noise. Figure 5 shows an example of such an event. Although we would not classify these events in the classical sense as a single event transient (SET), heavy-ion irradiation clearly magnifies the magnitude of the output oscillation noise. We found that in the more significant cases, the magnitudes of the oscillations were magnified to $\geq 0.9 \mathrm{~V}$. Therefore, the heavy-ion irradiation caused an increase of more than 0.4 V in the magnitude of the output oscillation, taking into account the preirradiation magnitude of $\sim 0.5 \mathrm{~V}$. Figure 6 shows the cross-section of these events, with the device operating at $\mathrm{V}_{\text {in }}=7 \mathrm{~V}$ and $\mathrm{I}_{\text {out }}=1 \mathrm{~A}$.

We observed a rapid decrease in the cross-section at a linear energy transfer (LET) value of $29.4 \mathrm{MeV} \cdot \mathrm{cm}^{2} / \mathrm{mg}$, as shown in Figure 6. Then the cross-section continues to increase with increasing LET. This may be caused by the variability of these oscillation events and/or parts. It may also indicate a high sensitivity at low LET values. We will need additional tests at the lower LET regions to further investigate this behavior.

We also observed a dropout event at an effective LET of $124 \mathrm{MeV} \cdot \mathrm{cm}^{2} / \mathrm{mg}$ for one device. The device was operating with $\mathrm{V}_{\mathrm{in}}=7 \mathrm{~V}$ and $\mathrm{I}_{\text {out }}=1.5 \mathrm{~A}$. Figure 7 shows the input supply current vs. time. The current drops from the nominal operation level of $\sim$ 1.15 A to $\sim 0.75 \mathrm{~A}$ after 100 s of run time, then dropping steeply to $\sim 0.006 \mathrm{~A}$. We did not observe similar events for another device, with the same operation conditions and effective LET value. We also did not observe such an event for the same device at an earlier run with similar conditions. We suspect that device over-heating, caused by the high output load, may have triggered the dropout.

The detailed information for each irradiation run is shown in Table III in the appendix.


Figure 5. Output voltage vs. time for the MSK5059RH, operating with $V_{\text {in }}=7 \mathrm{~V}$ and $\mathrm{I}_{\text {out }}=1 \mathrm{~A}$, irradiated with Kr at $60^{\circ}$ with an effective $\mathrm{LET}=59 \mathrm{MeV} \cdot \mathrm{cm}^{2} / \mathrm{mg}$, for $15 \mathrm{MeV} / \mathrm{amu}$ tuned heavy-ions.


Figure 6. Event cross-section vs. LET for the MSK5059RH, operating with $\mathrm{V}_{\mathrm{in}}=7 \mathrm{~V}$ and $\mathrm{I}_{\text {out }}=1 \mathrm{~A}$, irradiated with $15 \mathrm{MeV} / \mathrm{amu}$ tuned heavy-ions, for events with magnitude $\geq 0.9 \mathrm{~V}$.


Figure 7. Input supply current vs. time for the MSK5059RH, operating with $\mathrm{V}_{\mathrm{in}}=7 \mathrm{~V}$ and $\mathrm{I}_{\text {out }}=1.5 \mathrm{~A}$, irradiated with Au at $45^{\circ}$, with an effective LET of $124 \mathrm{MeV} \cdot \mathrm{cm}^{2} / \mathrm{mg}$, for $15 \mathrm{MeV} / \mathrm{amu}$ tuned heavy-ions.

## VI. Conclusions

The MSK5059RH showed susceptibility to output perturbations from heavy-ions. The heavy-ion irradiation increased the output oscillation noise by $\sim 0.5 \mathrm{~V}$, in the worst cases. The LET threshold for these events is less than $2.8 \mathrm{MeV} \cdot \mathrm{cm}^{2} / \mathrm{mg}$ with the device operating at $\mathrm{V}_{\text {in }}=7 \mathrm{~V}$ and $\mathrm{I}_{\text {out }}=1 \mathrm{~A}$. The event cross-section increases with increasing LET. However the cross-section appears nearing saturation at an effective LET of 124 $\mathrm{MeV} \cdot \mathrm{cm}^{2} / \mathrm{mg}$, where the cross-section is approximately $4 \times 10^{-5} \mathrm{~cm}^{-2}$. It may be necessary to investigate with additional tests, which will include various levels of output filtering, and other circuit layout considerations that will reduce the output oscillation and improve output stability. We believe the magnitudes of the radiation-induced fluctuations will decrease as the output oscillation is reduced.

## VII. Appendix

Table III. Heavy-ion irradiation run summary.

| Run <br> \# | $\begin{aligned} & \text { DUT } \\ & \# \\ & \hline \end{aligned}$ | Vin (V) | Iout <br> (A) | Trigger $(\mathrm{V})$ | Ion | Angle (deg) | LET <br> (MeV•c $\mathrm{m} 2 / \mathrm{mg}$ ) | Eff LET <br> (MeV.cm <br> 2/mg) | Dose $(\operatorname{krad}(\mathrm{Si}))$ | TID $(\operatorname{krad}(\mathrm{Si}))$ | Flux <br> (ions/cm2/s) | Fluence (ions/cm2) | SETs | Cross- <br> Section <br> (cm-2) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | 2 | 7 | 1 | 2.8, 3.7 | Kr | 0 | 29.4 | 29.4 | 4.7 | 20.1 | $2.70 \mathrm{E}+04$ | $1.00 \mathrm{E}+07$ | 0 | $0.00 \mathrm{E}+00$ |
| 10 | 2 | 7 | 1 | 2.9, 3.5 | Kr | 0 | 29.4 | 29.4 | 2.5 | 22.6 | $2.87 \mathrm{E}+04$ | $5.36 \mathrm{E}+06$ | 105 | $1.96 \mathrm{E}-05$ |
| 11 | 2 | 7 | 0.5 | 2.9, 3.5 | Kr | 0 | 29.4 | 29.4 | 4.7 | 27.3 | $2.97 \mathrm{E}+04$ | $1.00 \mathrm{E}+07$ | 1 | $1.00 \mathrm{E}-07$ |
| 12 | 2 | 7 | 0.1 | 2.9, 3.5 | Kr | 0 | 29.4 | 29.4 | 4.7 | 32 | $3.10 \mathrm{E}+04$ | $1.00 \mathrm{E}+07$ | 0 | $0.00 \mathrm{E}+00$ |
| 13 | 2 | 7 | 0.1 | 3.1, 3.3 | Kr | 0 | 29.4 | 29.4 | 0.65 | 32.65 | $3.08 \mathrm{E}+04$ | $1.37 \mathrm{E}+06$ | 162 | 1.18E-04 |
| 14 | 2 | 7 | 0.5 | 3.0, 3.4 | Kr | 0 | 29.4 | 29.4 | 0.24 | 32.89 | $2.90 \mathrm{E}+04$ | $5.09 \mathrm{E}+05$ | 74 | $1.45 \mathrm{E}-04$ |
| 15 | 2 | 7 | 1.5 | 2.75, 3.5 | Kr | 0 | 29.4 | 29.4 | 4.7 | 37.59 | $3.00 \mathrm{E}+04$ | $1.00 \mathrm{E}+07$ | 0 | $0.00 \mathrm{E}+00$ |
| 16 | 2 | 7 | 1.5 | 2.85, 3.35 | Kr | 0 | 29.4 | 29.4 | 0.8 | 38.39 | $3.05 \mathrm{E}+04$ | 1.70E+06 | 90 | $5.29 \mathrm{E}-05$ |
| 17 | 2 | 7 | 0.1 | 2.9, 3.5 | Kr | 60 | 29.4 | 59 | 9.4 | 47.79 | $3.00 \mathrm{E}+04$ | $1.00 \mathrm{E}+07$ | 0 | 0.00E+00 |
| 18 | 2 | 7 | 0.1 | 3.1, 3.3 | Kr | 60 | 29.4 | 59 | 0.36 | 48.15 | $3.05 \mathrm{E}+04$ | $3.86 \mathrm{E}+05$ | 73 | $1.89 \mathrm{E}-04$ |
| 19 | 2 | 7 | 1 | 2.9, 3.5 | Kr | 60 | 29.4 | 59 | 0.95 | 49.1 | $3.11 \mathrm{E}+04$ | $1.00 \mathrm{E}+06$ | 99 | $9.90 \mathrm{E}-05$ |
| 20 | 2 | 7 | 1 | 2.8, 3.7 | Kr | 60 | 29.4 | 59 | 9.5 | 58.6 | $1.07 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 86 | 8.60E-06 |
| 21 | 2 | 7 | 0.5 | 2.9, 3.5 | Kr | 60 | 29.4 | 59 | 9.5 | 68.1 | $1.05 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 170 | $1.70 \mathrm{E}-05$ |
| 22 | 2 | 7 | 1.5 | 2.85, 3.35 | Kr | 60 | 29.4 | 59 | 0.77 | 68.87 | $9.95 \mathrm{E}+04$ | $8.14 \mathrm{E}+05$ | 68 | $8.35 \mathrm{E}-05$ |
| 23 | 2 | 7 | 1.5 | 2.75, 3.5 | Kr | 60 | 29.4 | 59 | 9.4 | 78.27 | $1.03 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 8 | 8.00E-07 |
| 24 | 3 | 7 | 1.5 | 2.75, 3.5 | Kr | 60 | 29.4 | 59 | 9.5 | 9.5 | $9.75 \mathrm{E}+04$ | $1.00 \mathrm{E}+07$ | 24 | $2.40 \mathrm{E}-06$ |
| 25 | 3 | 7 | 0.5 | 2.9, 3.5 | Kr | 60 | 29.4 | 59 | 9.5 | 19 | $9.80 \mathrm{E}+04$ | $1.00 \mathrm{E}+07$ | 110 | $1.10 \mathrm{E}-05$ |
| 26 | 3 | 7 | 1 | 2.8, 3.7 | Kr | 60 | 29.4 | 59 | 9.5 | 28.5 | $9.96 \mathrm{E}+04$ | $1.00 \mathrm{E}+07$ | 48 | 4.80E-06 |
| 27 | 3 | 7 | 1 | 2.8, 3.7 | Kr | 0 | 29.4 | 29.4 | 4.7 | 33.2 | $1.00 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 14 | $1.40 \mathrm{E}-06$ |
| 28 | 3 | 7 | 0.5 | 2.9, 3.5 | Kr | 0 | 29.4 | 29.4 | 4.7 | 37.9 | $9.54 \mathrm{E}+04$ | $9.96 \mathrm{E}+06$ | 3 | $3.01 \mathrm{E}-07$ |
| 29 | 3 | 7 | 1.5 | 2.75, 3.5 | Kr | 0 | 29.4 | 29.4 | 4.7 | 42.6 | $9.80 \mathrm{E}+04$ | $1.00 \mathrm{E}+07$ | 0 | $0.00 \mathrm{E}+00$ |
| 30 | 3 | 7 | 1.5 | 2.75, 3.5 | Au | 0 | 87.5 | 87.5 | 14 | 56.6 | $1.06 \mathrm{E}+05$ | 1.00E+07 | 110 | $1.10 \mathrm{E}-05$ |
| 31 | 3 | 7 | 0.5 | 2.9, 3.5 | Au | 0 | 87.5 | 87.5 | 8.4 | 65 | $8.70 \mathrm{E}+04$ | $6.00 \mathrm{E}+06$ | 193 | $3.22 \mathrm{E}-05$ |


| 32 | 3 | 7 | 1 | 2.8, 3.7 | Au | 0 | 87.5 | 87.5 | 5.6 | 70.6 | $7.43 \mathrm{E}+04$ | $4.00 \mathrm{E}+06$ | 152 | 3.80E-05 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 33 | 3 | 7 | 0.1 | 2.9, 3.5 | Au | 0 | 87.5 | 87.5 | 14 | 84.6 | $7.00 \mathrm{E}+04$ | $1.00 \mathrm{E}+07$ | 18 | 1.80E-06 |
| 34 | 3 | 7 | 1.5 | 2.75, 3.5 | Au | 45 | 87.5 | 124 | 12 | 96.6 | $9.80 \mathrm{E}+04$ | $6.00 \mathrm{E}+06$ | 129 | $2.15 \mathrm{E}-05$ |
| 35 | 3 | 7 | 0.1 | 2.9, 3.5 | Au | 45 | 87.5 | 124 | 29 | 125.6 | $9.10 \mathrm{E}+04$ | $1.00 \mathrm{E}+07$ | 11 | 1.10E-06 |
| 36 | 3 | 7 | 1 | 2.8, 3.7 | Au | 45 | 87.5 | 124 | 6.5 | 132.1 | $8.90 \mathrm{E}+04$ | $3.30 \mathrm{E}+06$ | 133 | $4.03 \mathrm{E}-05$ |
| 37 | 2 | 7 | 1 | 2.8, 3.7 | Au | 45 | 87.5 | 124 | 5.1 | 83.37 | $8.00 \mathrm{E}+04$ | $2.60 \mathrm{E}+06$ | 103 | $3.96 \mathrm{E}-05$ |
| 38 | 2 | 10 | 1 | 2.8, 3.8 | Au | 45 | 87.5 | 124 | 29 | 112.37 | $8.30 \mathrm{E}+04$ | $1.00 \mathrm{E}+07$ | 669 | $6.69 \mathrm{E}-05$ |
| 39 | 2 | 10 | 0.5 | 2.9, 3.5 | Au | 45 | 87.5 | 124 | 1.4 | 113.77 | $7.58 \mathrm{E}+04$ | 7.10E+05 | 57 | 8.03E-05 |
| 40 | 2 | 7 | 0.5 | 2.9, 3.5 | Au | 45 | 87.5 | 124 | 5.5 | 119.27 | $8.00 \mathrm{E}+04$ | $2.80 \mathrm{E}+06$ | 112 | $4.00 \mathrm{E}-05$ |
| 41 | 2 | 7 | 1.5 | 2.75, 3.5 | Au | 45 | 87.5 | 124 | 16 | 135.27 | $6.00 \mathrm{E}+04$ | $8.20 \mathrm{E}+06$ | a lot | \#VALUE! |
| 42 | 2 | 7 | 1.5 |  | Au | 45 | 87.5 | 124 | 8.7 | 143.97 |  |  |  | \#DIV/0! |
| 43 | 2 | 7 | 1.5 |  | Au | 45 | 87.5 | 124 | 4.8 | 148.77 |  |  |  | \#DIV/0! |
| 44 | 2 | 7 | 1 |  | Au | 45 | 87.5 | 124 | 20 | 168.77 |  |  |  | \#DIV/0! |
| 45 | 3 | 7 | 1.5 |  | Au | 45 | 87.5 | 124 | 20 | 152.1 |  |  |  | \#DIV/0! |
| 46 | 3 | 7 | 1.5 |  | Au | 45 | 87.5 | 124 | 20 | 172.1 |  |  |  | \#DIV/0! |
| 47 | 3 | 7 | 1 | 2.8, 3.7 | Ar | 0 | 8.7 | 8.7 | 1.4 | 173.5 |  |  |  | \#DIV/0! |
| 48 | 3 | 7 | 1 | 2.8, 3.7 | Ar | 0 | 8.7 | 8.7 | 1.4 | 174.9 | $1.40 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 73 | 7.30E-06 |
| 49 | 3 | 7 | 0.5 | 2.9, 3.5 | Ar | 0 | 8.7 | 8.7 | 1.4 | 176.3 | $1.10 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 57 | 5.70E-06 |
| 50 | 3 | 7 | 0.1 | 2.9, 3.5 | Ar | 0 | 8.7 | 8.7 | 1.4 | 177.7 | $9.60 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 3 | 3.00E-07 |
| 51 | 3 | 7 | 1.5 | 2.7, 3.5 | Ar | 0 | 8.7 | 8.7 | 1.4 | 179.1 | $9.60 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 0 | $0.00 \mathrm{E}+00$ |
| 52 | 3 | 7 | 1.5 | 2.75, 3.5 | Ar | 0 | 8.7 | 8.7 | 1.4 | 180.5 | $1.00 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 10 | 1.00E-06 |
| 53 | 3 | 7 | 0.1 | 2.9, 3.5 | Ar | 0 | 8.7 | 8.7 | 1.4 | 181.9 | $1.10 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 5 | 5.00E-07 |
| 54 | 3 | 7 | 1 | 2.8, 3.7 | Ar | 0 | 8.7 | 8.7 | 1.4 | 183.3 | $9.60 \mathrm{E}+04$ | $1.00 \mathrm{E}+07$ | 93 | $9.30 \mathrm{E}-06$ |
| 55 | 3 | 7 | 0.5 | 2.9, 3.5 | Ar | 0 | 8.7 | 8.7 | 1.4 | 184.7 | $1.10 \mathrm{E}+05$ | $9.96 \mathrm{E}+06$ | 52 | 5.22E-06 |
| 56 | 3 | 10 | 0.1 | 2.9, 3.5 | Ar | 0 | 8.7 | 8.7 | 1.4 | 186.1 | $1.30 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 79 | 7.90E-06 |
| 57 | 3 | 10 | 1 | 2.8, 3.7 | Ar | 0 | 8.7 | 8.7 | 0.39 | 186.49 | $1.20 \mathrm{E}+05$ | $2.80 \mathrm{E}+06$ | 92 | 3.29E-05 |
| 58 | 1 | 7 | 1 | 2.8, 3.7 | Ar | 0 | 8.7 | 8.7 | 1.4 | 1.4 | $1.20 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 152 | $1.52 \mathrm{E}-05$ |
| 59 | 1 | 7 | 0.5 | 2.9, 3.5 | Ar | 0 | 8.7 | 8.7 | 1.4 | 2.8 | $1.30 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 28 | 2.80E-06 |
| 60 | 1 | 7 | 0.1 | 2.9, 3.5 | Ar | 0 | 8.7 | 8.7 | 1.4 | 4.2 | $1.30 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 0 | $0.00 \mathrm{E}+00$ |
| 61 | 1 | 7 | 0.1 | 2.9, 3.5 | Ar | 0 | 8.7 | 8.7 | 1.4 | 5.6 | $1.40 \mathrm{E}+05$ | $9.96 \mathrm{E}+06$ | 0 | $0.00 \mathrm{E}+00$ |
| 62 | 1 | 7 | 1.5 | 2.75, 3.5 | Ar | 0 | 8.7 | 8.7 | 1.4 | 7 | $1.30 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 32 | 3.20E-06 |
| 63 | 1 | 7 | 0.1 | 3.05, 3.35 | Ar | 0 | 8.7 | 8.7 | 1.4 | 8.4 | $1.30 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 136 | $1.36 \mathrm{E}-05$ |
| 64 | 1 | 7 | 1 | 2.8, 3.7 | Ar | 60 | 8.7 | 17.5 | 1.7 | 10.1 | $1.35 \mathrm{E}+05$ | $6.20 \mathrm{E}+06$ | 141 | 2.27E-05 |
| 65 | 1 | 7 | 0.5 | 2.9, 3.5 | Ar | 60 | 8.7 | 17.5 | 2.8 | 12.9 | $1.30 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 70 | 7.00E-06 |
| 66 | 1 | 7 | 0.1 | 3.05, 3.35 | Ar | 60 | 8.7 | 17.5 | 2.8 | 15.7 | $1.26 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 365 | $3.65 \mathrm{E}-05$ |
| 67 | 1 | 7 | 1.5 | 2.75, 3.5 | Ar | 60 | 8.7 | 17.5 | 2.8 | 18.5 | $1.23 \mathrm{E}+05$ | $9.97 \mathrm{E}+06$ | 45 | $4.51 \mathrm{E}-06$ |
| 68 | 1 | 7 | 1 | 2.8, 3.7 | Ne | 60 | 2.8 | 5.6 | 0.89 | 19.39 | $1.24 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 18 | 1.80E-06 |
| 69 | 1 | 7 | 0.5 | 2.9, 3.5 | Ne | 60 | 2.8 | 5.6 | 0.89 | 20.28 | $1.23 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 11 | 1.10E-06 |
| 70 | 1 | 7 | 0.1 | 3.0, 3.4 | Ne | 60 | 2.8 | 5.6 | 0.9 | 21.18 | $1.27 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 34 | $3.40 \mathrm{E}-06$ |
| 71 | 1 | 7 | 1.5 | 2.75, 3.5 | Ne | 60 | 2.8 | 5.6 | 0.9 | 22.08 | $1.29 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 0 | $0.00 \mathrm{E}+00$ |
| 72 | 1 | 7 | 1.5 | 2.8, 3.3 | Ne | 60 | 2.8 | 5.6 | 0.15 | 22.23 | $1.22 \mathrm{E}+05$ | $1.70 \mathrm{E}+06$ | 116 | $6.82 \mathrm{E}-05$ |


| 73 | 1 | 7 | 1 | 2.8, 3.7 | Ne | 0 | 2.8 | 2.8 | 0.45 | 22.68 | $1.25 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 1 | $1.00 \mathrm{E}-07$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 74 | 1 | 7 | 0.5 | 2.9, 3.5 | Ne | 0 | 2.8 | 2.8 | 0.5 | 23.18 | $1.36 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 2 | $2.00 \mathrm{E}-07$ |
| 75 | 1 | 7 | 0.5 | 2.95, 3.45 | Ne | 0 | 2.8 | 2.8 | 0.45 | 23.63 | $1.12 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 67 | 6.70E-06 |
| 76 | 1 | 7 | 1.5 | 2.75, 3.4 | Ne | 0 | 2.8 | 2.8 | 0.44 | 24.07 | $1.22 \mathrm{E}+05$ | $9.96 \mathrm{E}+06$ | 0 | 0.00E+00 |
| 77 | 1 | 7 | 1.5 | 2.8, 3.3 | Ne | 0 | 2.8 | 2.8 | 0.17 | 24.24 | $1.23 \mathrm{E}+05$ | $3.92 \mathrm{E}+06$ | 128 | $3.27 \mathrm{E}-05$ |
| 78 | 3 | 7 | 1 | 2.8, 3.7 | Ne | 0 | 2.8 | 2.8 | 0.44 | 186.93 | $1.29 \mathrm{E}+05$ | $9.94 \mathrm{E}+06$ | 1 | $1.01 \mathrm{E}-07$ |
| 79 | 3 | 7 | 0.5 | 2.95, 3.45 | Ne | 0 | 2.8 | 2.8 | 0.44 | 187.37 | $1.36 \mathrm{E}+05$ | $9.94 \mathrm{E}+06$ | 53 | 5.33E-06 |
| 80 | 3 | 7 | 0.1 | 3,3.4 | Ne | 0 | 2.8 | 2.8 | 0.44 | 187.81 | $1.33 \mathrm{E}+05$ | $9.97 \mathrm{E}+06$ | 7 | 7.02E-07 |
| 81 | 3 | 7 | 1.5 | 2.75, 3.4 | Ne | 0 | 2.8 | 2.8 | 0.45 | 188.26 | $1.22 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 9 | $9.00 \mathrm{E}-07$ |
| 82 | 3 | 7 | 1.5 | 2.8,3.35 | Ne | 0 | 2.8 | 2.8 | 0.45 |  | $1.25 \mathrm{E}+05$ | $1.00 \mathrm{E}+07$ | 0 | $0.00 \mathrm{E}+00$ |

