

Radiation Hardness Assurance (RHA) for Space Systems

Christian Poivey SGT/NASA-GSFC

Preamble

This talk will present a NASA approach of Radiation Hardness Assurance for space systems

RHA Outline

- Introduction
- Define the mission radiation environment
- Bound the part response
- Define the function/subsystem/system response
- Management of RHA
- Conclusion

RHA Outline

- Introduction
- Define the mission radiation environment
- Bound the part response
- Define the function/subsystem/system response
- Management of RHA
- Conclusion

- RHA consists of all activities undertaken to ensure that the electronics and materials of a space system perform to their design specifications after exposure to the space environment.
- Deals with mission/system/subsystems requirements, environmental definitions, part selection, part testing, shielding, and radiation tolerant design

Radiation Hardness Assurance goes beyond the piece part level

Project Requirements Flow-Down

RHA Outline

- Introduction
- Define the mission radiation environment
- Bound the part response
- Define the function/subsystem/system response
- Management of RHA
- Conclusion

Sources of Radiation to Consider

After Nikkei Science, Inc. of Japan, by K. Endo

Trapped Radiation Belt Models: NASA AP8, AE8

- Conversion of spatial coordinates to geomagnetic B/L coordinates
- Use of AP8/AE8 tabulated spectra

Trapped protons on HST (590km, 29 degrees)

Trapped Radiation Belt Models: NASA AP8, AE8

- 2 extreme cases of solar modulation
- static models that represent omnidirectional average fluxes over 6 months period of time
- B/L coordinates shall be calculated with the geomagnetic models used at the epoch of the generation of AP8/AE8 models
- At low altitude (<1000km), AP8 underestimates the actual fluxes
 TIROS

Despite their inaccuracies AE8 and AP8 are still the standard models for engineering analysis

Available at: http://www.spenvis.oma.be/spenvis/

Solar Particle Event, Mission Integrated Proton Fluence Models: NASA Emission of Solar Protons (ESP) & JPL1991

Solar protons, comparison of JPL91 and ESP model

12

Solar Particle Event and Galactic Cosmic Ray (GCR), Individual Event Model: CREME 96

- Provides GCR fluxes for elements from Z=1 to 92 for solar minimum and solar maximum conditions in an energy range from 0.1 to 1E5 MeV/u.
- Provides SPE fluxes for element from Z=1 to 92 for the worst week, worst day and peak 5 minutes.

Available at: http://crsp3.nrl.navy.mil/creme96/

Effects Induced by the Space Radiation Environment

- Cumulative Effects
 - Induced by electrons and protons
 - Total dose effects
 - Displacement Damage
- Single Event Effects (SEE)
 - Induced by heavy ions and protons
 - Potentially destructive
 - Single Event Latchup (SEL)
 - Single Event Burnout (SEB)
 - Single Event Gate Rupture (SEGR)
 - Non destructive
 - Single Event Upset (SEU)
 - Single Event Transient (SET)
 - Single Event Functional Interrupt (SEFI)
 - Multiple Event Upset (MEU)
 - Multiple Bit Upset (MBU)
 - ...
- Other: spacecraft charging*

* outside the scope of this short course

Radiation Environment Within the Spacecraft Quantification of the Different Effects

Observed Effect	Parameter used for quantification
Total Dose Effects	Total Ionizing Dose (TID)
Displacement Damage	Displacement Damage Dose (DDD) based on Non Jonizing Energy Loss (NIEL)*
Displacement Damage	or
	NIEL equivalent fluence for a selected proton energy*
	or
	Damage equivalent fluence for a selected electron or proton energy
Single Event Effects (SEE)	Heavy ion Linear Energy Transfer (LET) spectra
	and
	proton energy spectra

* May not be valid for III-V materials

TID, Computer Methods for Particle Transport

TID Top Level Requirement : Dose-Depth Curve

Total dose at the center of Solid Aluminum Sphere ST5: 200-35790 km, 0 degree inclination, three months

Aluminum shield thickness (mils)

For Electron Dominated Orbits, Sector Analysis/Ray Trace Can Significantly Underestimate or Overestimate the Dose Levels GEOSTATIONARY ORBIT

After R. Mangeret, ASTRIUM report, 2001

For Proton Dominated Orbits, Sector Analysis Gives a Good Estimation of the Dose Levels LEO ORBIT (820 km/90 degrees)

After R. Mangeret, ASTRIUM report, 2001

Courtesy of NASA New Millenium Program (NMP)

Spacecraft Structure

- Equivalent ~30mils Al

Power Supply Electronics

Detail - Transponder

ST5 - Total Mission Dose on Electronic Parts

Subsystem dose point

For Displacement Damage, an Equivalent Fluence or a Displacement Damage Dose (DDD) is Defined Based on NIEL

Heavy Ion Environment is Defined for a Conservative Value of Shielding

Integral LET Spectra at 1 AU (Z=1-92) for Interplanetary orbit 100 mils Aluminum Shielding, CREME96

The Proton SEE Environment is Defined for a Conservative Value of Shielding. Orbit Average and Maximum Fluxes are Defined

Trapped Proton Integral Fluxes, behind 100 mils of Aluminum shielding ST5: 200-35790 km 0 degree inclination , Solar maximum

RHA Outline

- Overview
- Define the mission radiation environment
- Bound the part response
- Define the function/subsystem/system response
- Management of RHA
- Conclusion

Parts and Material Potential Sensitivities

- <u>Materials</u>
- <u>CMOS electronic parts</u>

• Bipolar electronic parts

• Optoelectronic parts

• Solar cells

- Total Dose Effects
- Displacement Damage
- Total Dose Effects
- SEE
- Total Dose Effects
- Displacement Damage
- SEE
- Displacement Damage
- Total Dose Effects
- SEE
- Displacement Damage
- Total Dose Effects (cover glass)

Laboratory Radiation Testing Conditions are Significantly Different from the Actual in Flight Exposure to the Radiation Environment

temperature and bias conditions are also different

After LaBel & Stassinopoulos

Data Search and Definition of Data Usability Flow

Sources of Radiation Data

- Available databases:
 - NASA-GSFC: <u>http://radhome.gsfc.nasa.gov</u>
 - NASA-JPL: <u>http://radnet.jpl.nasa.gov</u>
 - ESA: <u>http://escies.org</u>
 - DTRA ERRIC: <u>http://erric.dasiac.com</u>
 - NRL REDEX: http://redex.nrl.navy.mil
- Other sources of radiation data:
 - IEEE NSREC dataworkshop, IEEE Trans. On Nuc. Sci., RADECS proceedings,..
 - Vendors ?

Generic TID Testing

Test standards: -US MIL-STD1019.5 -ESA/SCC 22900

Test Guidelines: -ASTM F1892

TID Characterization - Example

TID - Radiation Sources and Dose Rates

The laboratory dose rates are significantly higher than the actual space dose rates, testing according to test standards gives conservative estimates of CMOS devices TID sensitivity

After A Holmes Siedle and L Adams, Oxford Un. Press, 1993

Rebound Effect on CMOS Devices

The high temperature annealing is very important to check for rebound effect on CMOS devices

After J Schwank, IEEE TNS vol 31-6, 1983
Current Test Standards do not Allow to Bound the TID Response of Linear Bipolar Integrated Circuits

After T. Carriere, IEEE TNS vol 42-6, 1995

The Temperature Environment and the Bias Conditions Also Have a Significant Impact on the TID Response

- Application Conditions : Temperature
 - Space : typical temperature between 0 and 70 °C.
 - Laboratory : ambient temperature .
 - => In general, the laboratory temperature is a worst case in comparison with application temperature
- Application Conditions : Bias
 - Space : dynamic bias or OFF
 - Laboratory : Usually worst-case.
 - => The bias in laboratory is a worst case or equivalent in regard with the application bias

TID Testing- Effect of Bias FDN361AN

TID Testing- Effect of Bias

PM155

After T. Carriere, Astrium report, 1997 41

Displacement Damage Testing

After R Reed, IEEE TNS vol 48-6, 2001

Displacement Damage Testing

- Radiation source: Typically protons, one energy
 - on some devices (e.g. optocouplers), due to inconsistencies between experimental determination of damage factors and NIEL calculations, it is recommended to test the parts at multiple energies.
 - Larger Radiation Design Margins may be appropriate.
- Bias conditions
 - In general, less effect than for TID, in most cases parts are unbiased during irradiation.

SEE Testing

Test standards:

•JESD57 (heavy ions only)

•ESA/SCC 25100 (heavy ions and protons)

Test guidelines:

•ASTM F1192-90 (heavy ions only)

Cross section = number of observed SEE/particle fluence

Particle fluence in #/cm²
Cross section in cm² (or cm²/bit)

Heavy Ions Cross Section Curves, Example

KM44V16104BS-50, 64Mbit DRAM from SAMSUNG SEU bit errors

After C Poivey, ESA parts conference 2000

Proton Cross Section Curves, Example

After C Poivey, NSREC 1998 data workshop

46

SEE Testing - Radiation Sources

- Heavy ion accelerator
 - low energy, short penetration range compared to space heavy ions
 - parts are usually delidded for testing.
 - Tests performed under vacuum in most cases.
- Proton accelerators
 - space energy range available on accelerators
 - irradiation performed in Air.
 - parts generally do not need to be delidded.
 - A larger number of particles per test run is often needed for the tests (>10¹⁰ p/cm² compared to 10⁷/cm² for heavy ions).The dose deposited may be significant.

SEE Testing

- Application conditions : temperature
 - Space : typical temperature between 0 and 70 °C.
 - SEE testing : ambient temperature .
 - => In general, high temperature is a worst case for SEE testing
- Application conditions : bias
 - Space : dynamic bias
 - SEE testing : usually worst case, but not always
 - => High supply voltage is a worst case for Single Event Latchup (SEL). Low supply voltage is a worst case for Single Event Upset (SEU).
 - => The test frequency and the test patterns have a significant impact on the test results.

Effect of Test Pattern - Example

XPC603

RHA Outline

- Overview
- Define the mission radiation environment
- Bound the part response
- Define the function/subsystem/system response
- Management of RHA
- Conclusion

TID / DD - Analysis flow

Design Margin Breakpoint (DMBP)

DM < 1-2 < DM < 10 < DM < 100 < DM

Radiation Lot Testing

Qualitative approach recommended for systems with moderate requirements

After MIL-HDBK814

Part Categorization Criteria (PCC)

Log normal distribution law $PCC = exp(K_{TL}s)$

 K_{TL} = One sided tolerance factor based on sample size n, confidence level C and probability of survival Ps s = standard deviation of sample data

After MIL HDBK-814

One-Sided Tolerance Limits, K_{TL}, for 90% Confidence

After R Pease, Rad Phys Chem 43, 1994

PCC- Example of Application

After T. Carriere, Astrium test report, 1997

SEE - Analysis Flow

SEE - Analysis Requirement

SEE LET threshold	Analysis Requirement
> 100 MeVcm²/mg	SEE risk negligible, no further analysis needed
15 MeVcm²/mg <let<sub>threshold<100 MeVcm²/mg</let<sub>	SEE risk, heavy ion induced SEE rates to be analyzed
LET _{threshold} < 15 MeVcm ² /mg	SEE risk high, heavy ion and proton induced SEE rates to be analyzed

Heavy Ion SEE Rate Calculation Integral RPP Method

Integral LET Spectra at 1 AU (Z=1-92) for Interplanetary orbit 100 mils Aluminum Shielding, CREME96

KM44V16104BS-50, 64Mbit DRAM from SAMSUNG

Comparative Upsets Rates Geosynchronous GCR Solar Minimum Environment, CREME 96

Uncertainties in SEE predictions are significant

After E Petersen, NSREC 1997 short course 59

Proton SEE Rate Calculation

SEE Criticality Analysis (SEECA) Leads to System Performance

From SEECA document NASA-GSFC radhome web page http://radhome.gsfc.nasa.gov

SEE - Decision Tree

From SEECA document NASA-GSFC radhome web page http://radhome.gsfc.nasa.gov

Example of SEE Analysis

- Function Description
 - Memory module for Command&Data Handling (C&DH) subsystem processor : 8M*40 bits
 - 58Mx8 DRAM K4F660812D
 - SEU mitigation: Hamming (32,8) EDAC (correct one error, detect 2) + scrubbing

- Mission environment
 - 200km-35790 km
 - 0 degree inclination
 - 3 months duration
- Exposed to GCR, solar particles and trapped protons

DRAM: Dynamic Random Access Memory EDAC: Error Detection And Correction

Example of SEE Analysis

- Heavy ion results
 - No SEL
 - No SEFI
 - No block/column error
 - MBU
 - SEU
- GCR Heavy ion induced
 SEE rate
 - 0.07 SEU/device day
 - 10⁻⁴ MBU/device day

- Proton results
 - No SEL
 - No SEFI
 - No block/column error
 - No MBU
 - SEU
- Trapped Proton induced
 SEU rates
 - 3 SEU/device day

Example of SEE Analysis

- Function criticality analysis& requirement
 - one uncorrected error may cause the C&DH processor to fail, and then to reset
 - error vulnerable class: <
 1 failure/mission is allowed

The failure rate is acceptable for this mission, but a failure could happen the first day of the mission

- Function failure rate for background environment (GCR+trapped protons)
 - MBU ~ 0.04/mission
 - Accumulation of 2 SEU between two consecutive scrubbing of a data word

Rate/s={1-[$e^{-\mu}x(1+\mu)$]^N}/t_i*

 t_i=time required to update the total system memory=240s

 μ =mean number of upsets per memory word during $t_i=5E-9$

 N=total number of system memory word=8M

Rate/year~ 4x10⁻⁶/mission

RHA Outline

- Overview
- Define the mission radiation environment
- Bound the part response
- Define the function/subsystem/system response
- Management of RHA
- Conclusion

Management of RHA

Project Requirements Flow-Down

Radiation Specifications

- Environment specification
 - Particle flux, peak and average, shielded and unshielded
 - Mission dose depth curve
- Radiation Hardness assurance specification
 - Mission top level requirements
 - Required design margins
 - Test requirements

Radiation Hardness Assurance During the Program Life

- During the Proposal/feasability Phase
 - Draft Environment definition
 - Draft Hardness assurance requirement
 - Preliminary studies
- At the Preliminary Design Review (PDR)
 - Final Environment definition
 - Electronic design approach, ..
 - Preliminary spacecraft layout for shielding analysis
 - Preliminary shielding analysis
 - Final Hardness assurance requirement definition
- At the Critical Design Review (CDR)
 - Radiation test results
 - Final shielding analysis
 - Circuit design analysis results
- After CDR
 - Radiation Lot Acceptance tests
- After Launch
 - Failure analysis

RHA Outline

- Overview
- Define the mission radiation environment
- Bound the part response
- Define the function/subsystem/system response
- Management of RHA
- Conclusion

Conclusion

- The RHA approach on space systems is based on risk management and not on risk avoidance.
- RHA process is not confined to the part level.
 - Spacecraft layout
 - System/subsystem/circuit design
 - System operations
- RHA should be taken into account in the early phases of a program development, including the proposal and feasibility analysis phases.
Acknowledgments

- NASA-GSFC Radiation Effect & Analysis Group
 - Martha O'Bryan for the graphics
 - Janet Barth and Ken LaBel for their support
 - Epaminondas Stassinopoulos for advice
- Brian Bolger for editing the document
- Ron Pease and Renaud Mangeret for providing materials
- Paul Dressendorfer for advice