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Goal Statement

For advanced CMOS electronics:

Gather necessary data to ensure that you can
accurately bound the risk for a given mission application

A Failure risk. R =C*P, + C, » Tworisks

- e —— -

e~ Over-remediation risk, R, =C*(I-P)+ C, » Decide to fly the part “as
: is” when the risk of

- 7 failure is unacceptably

- <Y q

Risk = Min(R .k ,) high

* Decide part requires

Test Cost, €, = Risk finor remediation (i.e., testing)
when its failure

0 02 0.4 06 08 1 probability was

Ealurs Eronaillity sufficiently small “as is”

Risk(S) el
/

R. Ladbury et al., RADECS, Cap d'Agde,
France, 2005, pp. PB1-1-PB1-8.

CMOS = complimentary metal oxide semiconductor
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Outline

Describe two flavors of advanced CMOS

— Commercial-off-the-shelf (COTS)

— Radiation-tolerant standard products and application
specific integrated circuits (ASICs)

Define “necessary data”

— Total ionizing dose

— Single-event effects < key driver

Question how we “accurately bound the risk” for

a given mission

— Phenomenological,

— Analytical, and

— Statistical techniques

Conclusions
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Advanced CMOS Flavors

« COTS

= DeSiQHEd with no attempt urasszwaunu-vm'.m:a;
to mitigate radiation ARt 1
effects. COTS can refer to ; _
commodity devices orto . .
ASICs designed using a
commercially available
design system.

* Radiation-tolerant
— Designed explicitly to
account for and mitigate
radiation effects.
¢ By process and/or design

K. Kohnen and K. Chestnut, IEEE NSREC Short Course, 2009. EHERRRSTbEKC R taE PN e s c e s
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Examples of Advanced CMOS

- COTS * Radiation-Tolerant

— Synchronous dynamic — RHBD + RHBP in boutique
random-access memory foundries
(SDRAM) — RHBD applied to AMS, IBM,

— Flash memory and other Jazz, ONSemi, or TSMC =
non-volatile solutions 90 nm bulk/SOI CMOS

— Data converters — Use of pre-processed (i.e.,

— High-speed amplifiers hardened) silicon

substrates in commercial
process flows

— FPGAs

— Digital signal and multi-
core processors

— Field programmable gate

A () AMS = AustriaMicroSystems

TSMC = Taiwan Semiconductor Manufacturing Co.; SOI = silicon-on-insulator
RHBD = radiation-hardened by design; RHBP = radiation-hardened by process
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Total lonizing Dose (TID) Data
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Thank you to the NASA Magnetospheric MultiScale (MMS) Mission for testing support
e Part-to-part and lot-to-lot variability
— Affects number of components that must be tested to bound risk
— Limits usefulness of heritage data
— Tied to bias conditions and temperature — combined effects
To be published on http://nepp.nasa.gov/. 8

NEPP deliverable to be published on http://nepp.nasa.gov/.



Bounding TID Risk

* Test more hardware — easiest answer
— Example: 22 trials (i.e., parts) with 0 failures establishes pg >
90% with 90% confidence (binomial distribution)

— Not always possible due to schedule, budget, hardware
availability
» Define part-to-part and lot-to-lot variability — dictates
how many components should be tested
— Consideration for development phase with a process
— Use kerf structures to gather test data on multiple wafer lots

— Perhaps easier with qualified processes
» Utilize heritage (suspension) and similarity data, if
available, to augment analysis
— SeeR. L. Ladbury et al., IEEE TNS, 2011.
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Single-Event Effect (SEE) Data
* Destructive SEE can
45 1m bk CMOS SRAM still be an issue with
nm bu
w———————————— advanced bulk CMOS
§103|- Obtained at different : éi zg:::z: :;‘:z:: - - Dependent on
cJ“E' ‘Oai_angles-)effect.we Lf_T{: . . Ra|| Voltage
Eap e » 4 i « Layout constraints
S 107} am I |
?310‘5- 2 « Temperature (cryogenic
2 ?5 | latchup)
8107k . X | — C.J. Marshall et al.,
8 10} IEEE TNS, 2010.
0 40 e s o w0 © Solutions include
Effective LET (MeV-cm®/mg) . .
N. A. Dodds et al., IEEE TNS, 2010. - EffICIen_t well
contacting
Develop deterministic rules for — Hardened silicon
layout that will avoid single-event latchup wafers or SOI process
SRAM = static random access memory
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Single-Event Effect (SEE) Data

45 1 bk CMOS . De_zstructlv_e SEE can
?E.'[e('.ws:l-wellsuu:les:uﬂnc:e!:l_\ m stlll be an Issue WIth
: : T advanced bulk CMOS

110

: — Dependent on

« Rail voltage

¢ Layout constraints

« Temperature (cryogenic
latchup)

— C.J. Marshall et al.,
IEEE TNS, 2010.

| * Solutions include
Resistance apiied 1o N-well (ka2) — Efficient well

N. A. Dodds et al., IEEE TNS, 2010. contacti ng

— Contours are boundary where V, 4 = Vg4 — Hardened silicon

— Below = vulnerable; above = immune wafers or SOI process

— A-C = anode-cathode spacing
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50°C, 1.0A-C
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Single-Event Effect (SEE) Data

Sample SDRAM SEE Test Data Convergence can be slow!
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K. A. LaBel et al., IEEE TNS, 2008. R. L. Ladbury et al., [EEE TNS, 2007.

 Non-destructive SEE continue to be the most
difficult aspect of advanced CMOS radiation
effects

— Small event counts for effects like functional
interrupts — often depend on state, location, etc.
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Single-Event Effect (SEE) Data

45 nm SOI CMOS SRAM
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D. F. Heidel et al., IEEE TNS, 2009.

* Non-destructive SEE continue to be the most
difficult aspect of advanced CMOS radiation
effects

— Potential threats from low-energy protons
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Single-Event Effect (SEE) Data

32 nm SOI CMOS latch cross sections — contours are based on data & simulation

Soft Latch Stacked Latch Stacked Latch
15 MeV/
Xonon (side-by-side) (end-to-end)
a0
Roll Angle 90
-5'3 (degrees) \
: 06 & 30
. S \

\

Al o =
0 30 45 B0 90 0 30 45 80 90

M
0 30 45 8090
Tilt Angle (degrees) Tilt Angle (degrees)  Tilt Angle (degrees
K. P. Rodbell et al., IEEE TNS, 2011.

* Non-destructive SEE continue to be the most
difficult aspect of advanced CMOS radiation
effects

— Varied angular sensitivity (test considerations)
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Bounding SEE Risk

* Investigate risk of destructive 90 nm CMOS, RHBD Latch
events like latchup in bulk T
CMOS I
» Recognize importance of roll "
and tilt angle sensitivities

— Large-angle irradiations are
critical s Xowa (0 MeVA)

— Test setup and packaging R e
considerations Effecatye LET (MeVem fong)
— Observed in both SRAM and
latches
e Choose the right tool to
interpret the data and get an
on-orbit event rate
— From Figure of Merit to full,

Do
—
10

Cross Section (om’/bat)

Argon (10 MeV/u)

K. M. Warren et al., [IEEE TNS, 2007.

Edge of Sikcon

multi-dimensional Monte Carlo . -
True, end-on (90° tilt) irradiation of /D. G. Mavis et al., 2009 SEE Symposium; and
90 nm bulk CMOS SRAM 2009 IEEE Int. Conf. IC Design and Tech.
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Summary

- Size, weight, and power benefits of advanced CMOS
dictate its use in certain applications

* TID performance is acceptable as-is in many cases

o SEEs are real radiation driver concerning advanced
CMOS
— Risk of destructive effects still exists in bulk CMOS,
— Rare non-destructive effects like functional interrupts,
— Low-energy proton sensitivity, and
— Angular effects that place requirements on test setup,

packaging, and ion beam characteristics

* Real need for simulation tools capable of both informing
data collection and extrapolating data sets to yield on-
orbit rates
— See, for example, R. A. Weller et al., IEEE TNS, 2010.
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