NEPP Electronic Technology Workshop 2012

National Aeronautics and Space Administration

Challenges for Radiation Hardness Assurance (RHA) on Power MOSFETs

Jean-Marie Lauenstein

Radiation Effects and Analysis Group NASA Goddard Space Flight Center Greenbelt, MD 20771 USA

Acknowledgments

Government:

- Defense Threat Reduction Agency
- NASA/GSFC Radiation Effects and Analysis Group
 - Ken LaBel, Ray Ladbury, Hak Kim, Anthony Phan, Megan Casey, Alyson Topper, Stephen Cox, and Tim Irwin
- NASA/JPL
 - Leif Scheick, Steve McClure
- NAVSEA, Crane
 - Jeffrey Titus
- Naval Research Laboratory
 - Dale McMorrow, Stephen Buchner
- European Space Agency
 - Véronique Ferlet-Cavrois, Christian Poivey

University:

- University of Maryland
 - Neil Goldsman, Akin Akturk, and Siddarth Potbhare
- Vanderbilt University
 - Ron Shrimpf, Ken Galloway, Robert Reed, Bob Weller, and Shubhajit Mukherjee

Acknowledgments

Industry:

- Aeroflex
 - Joe Benedetto
- International Rectifier
 - Sandra Liu, Max Zafrani, and Paul Sherman
- Infineon Technologies
 - Wolfgang Kuebler, Bernd Eisener
- SEMICOA
 - Brian Triggs, Mike Gauthier, and Ahmed Iftikhar
- STMicro
 - Albert Ouellet, Géraldine Chaumont, Hervé Duperray, Patrick Briand
- Tower JAZZ
 - Scott Jordan
- Vishay Siliconix
 - Dave MacDonald, John Demiray, and Arthur Chiang

Introduction

• Definition of RHA on power MOSFETs:

 All activities undertaken to ensure that the MOSFET will perform to its design specifications after exposure to the space radiation environment

• RHA involves:

- Mission/system/subsystem requirements
 - Power, voltages, current, switching speed, size, quantity, etc.
- Radiation environment definition
 - Low Earth orbit (LEO)? Geosynchronous orbit (GEO)? ...
 - Heavy ion fluence, total ionizing dose (TID) accumulation
- Part selection
 - Availability, cost, reliability, electrical performance
 - and for RHA, single-event effect (SEE) & TID performance
- Part testing
 - Radiation source parameters, bias conditions, test setup
- Failure rate prediction: method (?)

NEPP RHA Focus

- Support test method revision/guideline development
- Evaluate alternative power devices for space applications
 - New technologies
 - New suppliers
- Develop reliable single event gate rupture (SEGR)/ single-event burnout (SEB) rate prediction capability
 - Enhance understanding of failure mechanisms
 - Develop a SEE rate prediction tool

Trench topologies

Superjunction structures

Expected Impact to Community

- Minimize power MOSFET derating penalty (maximize performance) through better failure rate prediction
 - Benefit to designers AND suppliers
- Strengthen existing and foster new relationships with industry
 - Expansion of power device options available for insertion into space applications
 - Development of products that meet the needs of spacecraft and instrument designers
- Streamline test and qualification methods
 - Foster agreement through collaborative efforts
 - Produce meaningful radiation test data

Some Background

- Single-event gate rupture (SEGR) continues to be a key failure mode in power MOSFETs
- SEGR is complex, making rate prediction difficult
- SEGR mechanism has two main components:
 - Gate oxide (G_{ox}) damage
 - Reduces field required for rupture
 - Epilayer response
 - Creates transient high field across the oxide

SEGR in a typical planar vertical power MOSFET (VDMOS)

We know our mission requirements and our radiation environment. We are ready for:

PART SELECTION

Vendors

The number of manufacturers of radiationhardened silicon power MOSFETs is growing

Vendor Datasheets

- Ex/ operation bias needed: gate-source off bias (V_{GS}) = 0 V with peak drainsource voltage (V_{DS}) = 180 V
 - Per NASA EEE-INST-002, V_{DS} derating factor = 0.75; 180 V \rightarrow 240 V for "overhead"
- Circuit designer locates part that seems to fit all electrical needs, noting also:
 - JANS-qualified, appears to meet both TID and SEE requirements per Mission Radiation Requirements document prepared by radiation engineer

If Only RHA Were That Easy...

- Power MOSFET SEE data are complex
 - Because the failure mechanisms are complex.
- Linear energy transfer (LET) alone is not the appropriate metric for power MOSFET SEE RHA

For the same incident LET, irradiation with a different ion yielded SEE failure at a much lower bias for this part

Ion LET vs. Energy

For the same incident LET, ions with different energies will deposit different total energy into the sensitive epilayer, yielding different SEGR test results. *(see Titus, et al., 1996)*

 Example of this ion range effect is shown in a 200V and a 400V vertical power MOSFET (VDMOS):

200V VDMOS

400V VDMOS

Ion Species vs. Energy Deposition

 Tests controlling for charge ionized in epilayer expose effects of ion atomic number on SEGR failure threshold bias

Ion species effects need to be included in efforts to bound the on-orbit risk of SEGR

Better RHA through improved standards for:

PART TESTING

LET is not a piece for bounding on-orbit risk: it can mask other key pieces

The Risk Puzzle: Test Conditions

Test conditions must be specified to enable data comparison

Appropriate beam and test conditions may vary based upon device properties

MIL-STD-750-1 TM1080 Environmental Test Methods for Semiconductor Devices: SEB and SEGR

Revision released this year addresses ion energy/species effects

- Device "characterization tests are typically conducted to define the worst-case operating conditions"
- "Ion energy should be considered when determining/defining worst-case test conditions"

Worst-case (for SEGR) test condition for an ion species:

 "occurs when the ion fully penetrates the epitaxial layer(s) with maximum energy deposition through the entire epitaxial layer(s)"

TM1080 now specifies an ion range that places the Bragg peak at the epilayer/substrate interface

Worst-Case Ion Range

• Titus, et al., 2001 first reported on the worst-case ion penetration range and in 2003, suggested a test method based upon this range.

Empirically-Defined Worst-Case Ion Energy: Example

 Worst-case ion range will be the sum of overlayer and epilayer thicknesses, PLUS the ion range at its Bragg peak.

Overlayers: ~ 7 μm Epilayers: ~ 40 μm Xe range at Bragg peak: 31μm

Total: 78 μm

NEPP is involved in developing an ASTM International guideline for power MOSFET testing

Existing Slash Sheet SEE Conditions

What about those older lower-energy data?

How do we add new vendors to existing slash sheets?

Which Factors Belong in a Slash Sheet?

An active topic at JEDEC Solid State Technology Association JC13.4 ...

How can we use the test data (worst-case or not)?

FAILURE RATE PREDICTION

History of Rate Prediction

- There is no accepted or verified power MOSFET failure rate prediction method.
- There are several proposed methods for estimating the failure rate:
 - Titus, et al. (1999) prediction of "Early Lethal SEGR Failures" in VDMOS, via Monte Carlo and threshold LET
 - Thales Alenia (Marec, 2009) concept of equivalent LET with use of failure cross section vs. equivalent LET data
 - Edmonds & Scheick (2010) method for including contribution of failures by low-energy ions
 - Lauenstein, et al. (2011) definition of an upper bound on the failure rate considering both ion species and energy

Upper Bound on SEGR Failure Rate

NASA

Defining the upper bound (UB) of hazardous flux at a given orbit for a given SEGR response curve: examples for geostationary orbit (GEO)

$\Phi_{\text{UB}}(\text{Z}_{i}, \text{LET}_{i}) = \int_{1}^{92} \int_{\text{LET}_{i+\Delta}}^{105} \phi(\text{Z}, \text{LET}) d\text{LET} d\text{Z} + \int_{\text{Z}_{i+1}}^{92} \int_{(\text{LET}_{i}/2)}^{\text{LET}_{i}} \phi(\text{Z}, \text{LET}) d\text{LET} d\text{Z}$

Upper Bound on SEGR Failure Rate (cont'd)

Upper Bound on SEGR Failure Rate Defined From Φ_{UB} :

 $\text{Rate}_{\text{UB}} = \Phi_{\text{UB}} \cdot \text{N} \cdot \text{A} \cdot 4\pi (1 - \cos(\theta)) \cdot f$

- N = # devices to be flown
- A = SEGR cross-section
 - Gate area of die
- θ = max off-normal angle of incidence of SEGR vulnerability
- f = off-state duty cycle

Current form is overly-conservative. Next step: Refine inclusion of angular effects

Mechanisms of Ion Species Effects on SEB & SEGR

- NEPP is involved in enhancing our understanding of power MOSFET failure mechanisms to:
 - Permit failure rate prediction
 - Identify appropriate test methods
- Vanderbilt University graduate student research
 - Explain recent trending of SEB failure thresholds with ion atomic number through detailed modeling of test data
 - Identify mechanisms of oxide damage in SEGR

On-state electron current density

Off-state depletion regions

Conclusions: Power MOSFET RHA

- Good diversification of radiation hardened silicon power MOSFET suppliers
- Test method standards better reflect current research and understanding
- Work still to be done to develop meaningful slash sheets that permit multiple vendors marketing a given part number
- Despite SEGR/SEB discovery in power MOSFETs over 25 years ago, we still don't fully understand the failure mechanisms
 - Many groups actively pursuing power MOSFET SEE research