

NASA Detector Requirements

Cheryl Marshall NASA / GSFC

Paul Marshall GSFC Consultant

SEEWG 2002 Los Angeles, CA November 5, 2002

Outline

- NASA Detector Roadmap Process
 - Science Enterprise Roadmaps: Space (SSE) & Earth (ESE)
 - Space Science Themes
 - Astronomical Search for Origins (ASO)
 - Structure & Evolution of the Universe (SEU)
 - Exploration of the Solar System (ESS)
 - Sun Earth Connection (SEC)
- Key Missions and their Detector Requirements
 - Radiation Effects Issues
- Summary of Roadmap & Detector Working Group Conclusions Organized by Wavelength

Strategic Planning Process: Office Of Space Science (OSS)*

Detector Roadmaps - OSS

- UV / Visible Working Group
 - "UV-Optical Detectors for Space Astrophysics," edited by Chris Blades, 10/2001
- Infrared, Submillimeter, and Millimeter Working Group
 - "Detector Needs for Long Wavelength Astrophysics," edited by Erick Young, 6/2002
- Theme Roadmaps
 - Origins (ASO)
 - View technology roadmap documents at http://origins.jpl.nasa.gov/
 - Structure & Evolution Universe (SEU) Roadmap Investigation
 - View final report & individual Mission responses to the SEU technology roadmap subcommittee questions at http://universe.gsfc.nasa.gov/roadmap/docs/

Detector Funding Challenges

- It is recognized that detectors all too often result in significant cost overruns & schedule delays.
- The bulk of the detector development falls on the shoulders of the cornerstone programs – not just final engineering.
- Other programs (SBIRs, Explorer Technology funds, Research

 Office Space Science (ROSS), Space Astrophysics R&A
 (SARA)) are helpful for the early concept stages.
- Funding of component breadboard validation & subsystem prototypes is difficult, especially >30 μ m where commercial & military interest is lacking.
- Large Telescope System Technology Initiative (LTSI)
 - Targets 20-40 m class. Not as yet real, but has a significant detector component.

Origins Theme Detectors

- SIRTF (1 m class) <u>1/9/03 Launch!</u> Developed detectors (3 180 μm) with sufficient sensitivity in large arrays
- JWST (6 m class)
 - Pushing very low noise performance for large format, small pixel (18 μm) detector arrays in the far visible to MIR (0.6 5 μm)
- KEPLER, SUVO, etc. (Likewise DOE-led SNAP, ESA-led GAIA, etc.)
 - Mosaics of high performance, large format CCDs
- TPF (~8 m class IR; 8 m class UV/Optical) TBD architecture.
- SAFIR (~10 m class?; 20-800 μm)
 - MIR & FIR detectors with sufficient sensitivity in large arrays (10 3 10 4 pixels @ 600 μ m for 10 m telescope)
- SUVO (4 m, or perhaps 8 m class in the UV coupled with TPF)
 - Solar Blind UV detectors with larger formats & higher QE
- Life Finder & Planet Imager: diffraction-limited 20-40 m telescopes
 - Large Format SWIR and MIR arrays

Why the Longer Wavelengths?

NIR	MIR	FIR	Submm	MM
0.6 - 5 μm	5 - 40 μm	>40 μ m	200 μm – 1 mm	

- Direct observation of very distant objects.
 - Longer wavelengths penetrate cosmic gas & dust better.
- Longer wavelengths also permit earlier (red-shifted) objects to be observed. (UV/optical science with IR technology.)
- >80% observed radiant energy of the universe from
 40 μm to several MM
 - Thermal radiation from the dust in our galaxy
 - Red-shifted dust emission from earliest galaxies
 - Cosmic Microwave Background (CMB)

Detector Trends are Science Driven

A scientific observation is reduced to a predicted signal strength and required angular scale, sky coverage & position, etc.

T_{obs} oc (Sensitivity)² / N_{pixels}

- Sensitivity is key but for broadband imaging¹ with long wavelength direct detectors we approach fundamental limits
 - Background limited by statistical photon fluctuations. (Scattered sunlight & zodiacal thermal emission for λ < 100 μm.)
 - Confusion limit also comes to play when multiple sources lie within a single pixel and add uncertainty to measuring brighter sources.
- <u>Driver then becomes larger arrays</u> for maximum reasonable observing time.
 - Optical arrays now in use with >10⁷ pixels but largest FIR array is the
 32 x 32 SIRTF photoconductor array. Story is similar from IR to MMwave,
 - At 160 μm, SIRTF hits confusion limit in 40 s even in low bkgnd. regions.

¹ Spectroscopy issues more complex but requires ~10² greater sensitivity.

SIRTF Detectors (2003 Launch)

IRS detector

IRAC¹

4-channel camera with simultaneous 5.12 x 5.12 arcmin images at 3.6, 4.5, 5.8, and 8 μm . All 4 detector arrays are 256 x 256, with 1.2 arcsec pixel size.

256 x 256 InSb at 3.6 & 4.5 μm Raytheon SBRC

256 x 256 Si:As IBC⁴ at 5.8 & 8 μm **Raytheon SBRC**

IRS²

4 separate modules using backside-illuminated IBC⁴ detectors (Boeing)

128 x 128 Si:As at $5.3 - 14 \mu m$

128 x 128 Si:As at 10 - 19.5 μ m high-res

128 x 128 Si:Sb at 14 - 40 μ m

128 x 128 Si:Sb at 19 - 37 μm

low-res

low-res

high-res

MIPS³

Si:As (IBC) 24 μ m

Ge:Ga at 70 µm

Ge:Ga at 52-99 μ m

32 x 32 stressed Ge:Ga 160 μm

DRS

Developed & built by MIPS Team

Developed & built by MIPS Team

Developed & built by MIPS Team

¹ IR Array Camera, ² IR Spectroscopy, ³ Multi-Band Imaging Photometer

⁴IBC: Impurity Band Conduction, or BIB: Blocked Impurity Band detectors

JWST Integrated Science Instrument Module (ISIM)

Cesa NIRSpec

JWST Detector Requirements 5-10 yr. @ L2 (GCR & solar particles)

- NIR Requirement: Zodiacal background-limited performance for imaging, up to spectral resolution (λ/Δ λ) of 10 at λ = 2 μ m
 - Likewise for MIR, except $\lambda = 10 \mu m$
 - Detect sources as faint as Mag 33 which implies <1 photon/s at the detector
- NIR Specifications
 - 64 Megapixels with high sensitivity
 - 4K x 4K Mosaic FPA 2K x 2K unit Sensor Chip Assembly
 - Pixel Noise (1,000 sec): Requirement 10 e⁻ rms (30-37 °K)
 - Quantum Efficiency > 80% for λ from 0.6 to 5 μ m
 - Major Concerns Read Noise, Dark Current and Glow
 - Other: Full well, Linearity, Persistence, Pixel Pitch, Frame Time,...

JWST Detector Requirements¹

- Radiation: <4% pixels out of spec at EOM at L2
 - "Need minimal or no effect on key parameters like responsivity, read noise & dark current."
 - Majority of permanent damage from solar particles.
- Cosmic Ray Upsets²: <10% (Goal of <2%) of pixels above total noise specification after a 1000 sec integration in a cosmic ray flux of 5 s⁻¹cm⁻².
 - Extensive experimental & modeling effort underway to characterize primary proton hits and secondary production in the observatory structure, both prompt and delayed (e.g. activation products).
 - Such "microglitches" have already been a problem for on-orbit IR cameras with much less sensitivity than JWST.

¹ Check http://ngst1.hst.nasa.gov/SearchLib.asp for latest version.

² Includes cosmic rays (w/ protons), solar particles & all secondaries!

Detector Funding Challenges

- It is recognized that detectors all too often result in significant cost overruns & schedule delays.
- The bulk of the detector development falls on the shoulders of the cornerstone programs – not just final engineering.
- Other programs (SBIRs, Explorer Technology funds, Research

 Office Space Science (ROSS), Space Astrophysics R&A
 (SARA)) are helpful for the early concept stages.
- Funding of component breadboard validation & subsystem prototypes is difficult, especially >30 μ m where commercial & military interest is lacking.
- Large Telescope System Technology Initiative (LTSI)
 - Targets 20-40 m class. Not as yet real, but has a significant detector component.

Radiation Effects Characterization

- Radiation effects & Analysis Group at NASA GSFC is teamed with the detector characterization groups to assess radiation effects via experiments & modeling.
 - NASA's Electronic Parts & Packaging (NEPP) Program
 Electronics Radiation Characterization (ERC) Advanced Sensors
 project (under NASA's Electronic Parts & Packaging (NEPP)
 Program) is also collaborating with JWST.
- Proton Testing (very low noise cryo accelerator environment)
 - Proton damage and transient testing (& analysis) of a HgCdTe array (with AFRL) & detector charge collection modeling have provided valuable experience. More experiments in 12/02.
 - Rockwell HgCdTe with H1RG (1k x 1k) proton tested 10/02.
 - Raytheon SB291 ROIC proton tests 12/02.
 - Raytheon InSb with SB291 ROIC to be tested 1Q03.
 - Test & measurement fidelity issues are significant!

Rockwell/Hawaii 2048x2048 5μm HgCdTe NGST FPA (ARC)

In the NGST test dewar ready for test!

Raytheon/U of R 2K x 2K InSb Detectors (ARC)

Large Format Far-IR Detector Development

- Seek rare objects hence need to cover a lot of sky
 - Survey speed requires improved QE & larger formats
- Large Format Semiconducting Bolometer Arrays (384 pixels!)
- Superconducting Transition Edge Sensor (TES) Bolometers
 - Astronomical application with SQUID multiplexers, detector-noise limited multiplexed readout & novel antenna-coupled designs demonstrated for scalability
- Photoconductors
 - SIRTF demonstrated Ge:Ga: 32x32 @ 70 μm & 2x20 @ 160 μm
 - Ge-based arrays don't work >200 μm (and must be stressed for ~100 200 μm operation)
 - Si:As BIB (or IBC) arrays exist for MIR (6 40 μm in astronomy)
- Novel ultrasensitive sensitive detectors of interest
 - Superconducting tunnel junctions with RF-SET, antenna-coupled hot electron TES bolometers & kinetic inductance detectors
- Heterodyne receivers (Coherent detection)

Single Aperture FIR Observatory: SAFIR

- SAFIR (>2015; 10 m class at 20 600 μm)
 - Seeks rare objects hence needs to cover a lot of sky
 - Survey speed requires improved QE & larger formats:
 - 128x128 array with NEP¹ ~3 x 10⁻¹⁹ W/ $\sqrt{\text{Hz}}$
 - 64x64 array with NEP ~3 x 10^{-20} W/ $\sqrt{\text{Hz}}$
- Superconducting TES bolometer
 - Can be made in large arrays with low power operation
 - Small mass, volume, and cryogenic system complexity
 - Very sensitive and fast
 - Not as mature as other technologies
- Semiconducting bolometer
 - Well-established
 - Cryo-electronic assembly can be more complex
 - Not easily multiplexed

1 Noise Equivalent Power (NEP): The power falling on 1 detector to produce a S/N = 1 Note that some sources quote a requirement of 10-21 W/ \sqrt{Hz} .

Terrestrial Planet Finder (TPF)

- Selected 2 of 60 architectures (5/02), to select one in ~2006.
- IR Nulling Interferometry (large arrays of sensitive FIR detectors)
- UV / Visible Coronagraph (TPF + SUVO??)
 - Photon-counting microchannel plate (MCP) detector arrays
 - Large format (in area & pixel count), low background, zero read noise, long wavelength rejection, radiation tolerance, R.T. operation
 - Revitization with advent Si MCP that can serve as substrate for high QE photocathodes. Capability for larger formats & production yield. Novel readout technology also being explored.
 - AlGaN arrays are exciting and have commercial & DoD interest but dark currents are many orders of magnitude too high...

 UV Observatory detector working group is considering technology paths for next UV/Optical Telescope.

SEU Constellation-X (~2009 Launch)

- Array of X-ray telescopes to look at black holes, galaxy formation & missing baryonic matter.
- Hard X-ray Telescope (HXT) at 6-40 keV!
 - CdZnTe or CdTe arrays
 - Series of stacked Silicon strip detectors
 is being evaluated as a backup technology
- X-ray Calorimeter Array (1-10 keV)

CdZnTe

- 32x32 superconducting transition edge sensor (TES)
 microcalorimeter with NEP ~3 x 10⁻¹⁸ W/√Hz
 - Need simultaneous readout of all pixels, single photon detection
 - Both far-IR & X-ray communities are interested, a plus.
 - Could be pathfinder for LF if funded sufficiently.

SEU Constellation-X, cont.

- Gratings / CCD Arrays (0.25 1 keV)
 - Investigating MIT-LL resistive-gate CCD with enhanced low energy efficiency in a front-illuminated CCD
 - Development on hold.
 - MIT-LL Event-driven CCDs (signal charge is sparse)
 - Gen I: 512 x 512 out of fab; Gen III: planning 3k x 4k

Si-based Detector Arrays

CCD

- Wide variety of very high performance large format CCDs for applications in X-ray and UV/Visible, therefore a critical technology to push in foreseeable future.
- Radiation sensitivity is an important problem, especially charge transfer efficiency (CTE) degradation. (Also hot pixels, increased dark current, transients.)

APS

- No CTE issue, and opportunity for highly integrated, low-power operation.
- Dark current levels, uniformity, reset noise, etc. remain issues.

CMOS Hybrid

Promising technology in development. (e.g. Rockwell)

CID

- Again, no CTE issue, but less performance. One manufacturer.
- Viability of technology base is a great concern.

CCD Mosaics

- CCD array size continues to grow beyond 4k x 4k
 - Can fully sample the working field of view of 8-10 m telescopes but plans for 25 – 100 m telescopes & high resolution cameras on the ground.
- Growth in mosaics accompanied by more complex controller systems able to handle multiple readout channels.
 - Power, heat & cost challenges in space
 - ASIC controllers are being used
 - Hybrid imaging technologies using bump bonding to couple
 CMOS circuitry to a CCD-based array (JPL, MIT)

Future Missions with Mosiacs

- Supernova Acceleration Probe SNAP (2 m) (DOE-led)
 - GigaCAM billion pixel imager using 4-side abuttable high resistivity LLNL p-CCDs & 2k x 2k Rockwell NIR HgCdTe devices.
 - Heavy leverage from NASA HST WFC3 1k x 1k 1.7 μm array and JWST
 2k x 2k format ROIC development.
 - Mosaic of 36 2k x 2k HgCdTe NIR and 36 3.5k x 3.5 K p-CCDs
- Kepler (1 m) Mosaic of 42 2.2k x 1k n-CCDs
- ESA-led GAIA Mosaic of 200 4k x 2k n-CCDs
- SUVO (4 8 m)
 - Requires a minimum of 16k x 16k. 4k x 4k CCD development by
 HST ACS 'surprisingly difficult' so plan a mosaic.

Hardening CCDs is a Challenge

- Incremental hardening techniques of n-CCDs
 - Multi-phase pinned (MPP) operation, formats that minimize the number of parallel transfers (e.g. ACS requested a 4k x 2k CCD from SITe), clever readout schemes, cooling, mosaics.
 - Efficacy of some good ideas such as the 'notch' has been demonstrated but can be elusive.
 - Other tricks such as filling traps in advance of a target can be effective in some cases, but are not a given.
 - p-CCDs may provide a X3 improvement in CTE radiation performance, based on an E2V prototype device.¹
 - Further efforts, including gettering and notch techniques are being pursued by DTRA (SBIR with Full Circle Research), and programs at Berkeley (e.g. SNAP).

¹ Hopkinson, IEEE Trans. Nucl. Sci., Vol. 46, Dec. 1999.

CCD Lessons Learned

- Hubble Space Telescope (HST) Experience
 - Wide Field Camera 2 CTE has decreased 15 40% from 1991-1999,
 depending on the sky background level. (Heavily shielded LEO)
 - The key scientific observations tend to be degraded first.
 - Hot pixel growth rates require monthly anneals that consume 10% of the observing time on the HST instruments (STIS, WFC2, ACS).
 - We are currently studying this effect on ACS (SITe 2k x 2k) through onorbit CTE and hot pixel characterizations, and through ground-based studies on the Wide Field Camera 3 (E2V CCD43) to be launched in 2004. We have no idea why ~0 °C annealing is effective!
- The sensitivity of CCDs to radiation is <u>extremely</u> application dependent. LEO can be a challenge!
 - Likewise, this leads to significant ground test fidelity issues. For ex., What is the appropriate CTE measurement technique for a given on-orbit application?

Key UV / Visible Detector Challenges

• <u>UV / Visible</u>:

- We enter "billion pixel missions" requiring large volume fabs at the same time the CCD industry is meeting competition from APS & CMOS technologies.
- Specialized CCDs (e.g. QE improvement in NUV (200 400 nm) and the FUV (100 – 200 nm)
 - UV imaging with CCDs remains a challenge due to their high QE in visible, low UV flux levels & low sky backgrounds

UV:

- Solar Blind UV detectors with larger formats & higher QE
- Current missions use photocathodes (PC) with MCP intensifiers with various readouts.
 - In the near & mid term PC/MCP/RO technology must be pushed
 - Emerging Si MCPs promise for larger formats & production yield
- Other technologies: Electron Bombarded CCDs (EBCCDs), AlGaN, GaN or SiC arrays, as well as panchromatic technologies such as delta-doped CCDs, energy-resolving STJs & TESs.

Longer Wavelength Detector Challenges

- IR, Submm & millimeter wave working group recommends 'detector czar' to see balanced and sustained support to maintain or advance key capabilities with vendors.
 - Longer wavelengths have no military or commercial interest.
- Photoconductors: Arrays of 1024 pixels exist out to 120 μ m using CMOS ROIC technology adapted from shorter wavelengths. Need to generally expand formats.
 - Si ROIC is critical for large formats, and NASA has unique deep-cryogenic CMOS processing needs.
- Develop Ge or GaAs IBC detectors (possibly out to 400 μm) in large formats.
- TES bolometers should be producible in large arrays, and development of SQUID multiplexers & system architectures will be key.
- Semiconducting bolometers with individual JFET amps perform well but difficult to scale. Monitor Herschel large format arrays mated to MOSFET readouts.
- Other: Monitor energy-resolving/photon-counting STJ & TES that may emerge in the NIR, as well as bandgap engineered devices.

Single PbS Detector, 1967 PtSi NIR Mosaic, early 1990s

Visible

2MASS* @1.25 μm & 2.17 μm

The Galactic Center

2 MASS + Midcourse Space Experiment (MSX) @ 11 μm

*2MASS is 2 µm All Sky Survey