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Acronym Definitions 

• BNL = Brookhaven National Laboratory 
• CAD = Computer-Aided Design 
• CMOS = Complementary Metal Oxide 

Semiconductor 
• CNL = Crocker Nuclear Laboratory 
• ESP = Emission of Solar Protons 

– M. A. Xapsos et al., IEEE Trans. Nucl. Sci., vol. 46, no. 6, 
pp. 1481-1485, 1999. 

• ICRU = International Commission on 
Radiation Units & Measurements 

• IUCF = Indiana University Cyclotron Facility 
• IEEE = Institute of Electrical and Electronics 

Engineers 
• LBNL = Lawrence Berkeley National 

Laboratory 
• LET = Linear Energy Transfer 
• NASA/GSFC = NASA Goddard Space Flight 

Center 

• NIST PSTAR (National Institute of Standards 
and Technology) 

– http://physics.nist.gov/PhysRefData/Star/Text/PSTAR.
html  

• SEU = Single-Event Upset 
• SNL = Sandia National Laboratories 
• SOI = Silicon-On-Insulator 
• SRAM = Static Random Access Memory 
• SRIM = Stopping and Range of Ions in Matter 

– http://www.srim.org  

• TAMU = Texas A&M University 
• TNS = Transactions on Nuclear Science 
• TRIUMF = Tri-University Meson Facility 

– Definition no longer used – dropped after University of 
Alberta joined the TRIUMF consortium 
(http://www.triumf.ca/)  

• UCD = University of California/Davis 
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Elemental abbreviations used – e.g., N = nitrogen, O = oxygen, etc. 

http://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html
http://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html
http://www.srim.org/
http://www.triumf.ca/
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Literature Background 
• Observed first low-energy proton, direct ionization 

SEUs in 2007 through IBM internal effort 
– IBM 65 nm SOI CMOS latches and SRAM 
– K. P. Rodbell et al., IEEE Trans. Nucl. Sci., vol. 54, no. 6, pp. 

2474-2479, Dec. 2007. 
• Confirmed the following year by a NASA/GSFC, IBM, 

and Sandia National Labs collaboration 
– IBM 65 nm SOI CMOS SRAM 
– D. F. Heidel et al., IEEE Trans. Nucl. Sci., vol. 55, no. 6, pp. 

3394-3400, Dec. 2008. 
• Expanded research efforts reported in subsequent 

publications 
4 v5 
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Low-Energy Proton SEUs 
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Cross sections increase by one or more orders of magnitude below 2 MeV 

J. R. Schwank et al., IEEE TNS, 2012. 

IBM 45 and 65 nm SOI SRAMs 



To be presented by J. Pellish at the 2012 Microelectronics Reliability & Qualification Workshop (MRQW), 
11-12/Dec/2012 in Los Angeles, CA and published on https://nepp.nasa.gov/ 

UNCLASSIFIED; PUBLIC DISTRIBUTION APPROVED 

Two Goals for Low-Energy Proton 
Test Guideline Development  
• Evaluate new technologies for 

low-energy proton sensitivity 
– Will it upset or not? 
– What accelerator source do I 

use? 
• Determine effective error rate 

contribution from space 
environment 
– What’s the incident 

environment? 
– How can you calculate an upset 

rate? 

v5 6 

Device under test at UCD CNL. 
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Evaluation of Low-Energy 
Proton Sensitivity 

• Only protons near the Bragg Peak can cause SEUs 
– Protons (and other ions) near end-of-range behave erratically 
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NIST PSTAR tool (ICRU Report 49, 1993) 

Bragg Peak 

Protons in 
Silicon 
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Evaluation of Low-Energy 
Proton Sensitivity 

• As proton energy decreases, 
the uncertainty in the 
experimental mass stopping 
power (LET) increases. 

• Origin of the suggestion to use 
high-energy, light heavy ions as 
a surrogate 
– Sierawski et al., IEEE TNS, 2009. 
– He, C, N, and O 
– Greater than 16 MeV/amu 
– Higher energy beams could 

utilize heavier ions 
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B. D. Sierawski et al., IEEE TNS, 2009. 

Bragg Peak 

Protons in Silicon 
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Evaluation of Low-Energy 
Proton Sensitivity 
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IBM 45 nm SOI SRAM 

D. F. Heidel et al., IEEE TNS, 2009. 

Components with measurable cross sections below a LET of 1 MeV-cm2/mg 
are likely sensitive to low-energy protons. 

40 MeV/amu 
nitrogen @ 
TAMU 
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Evaluation of Low-Energy 
Proton Sensitivity 
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IBM 45 nm SOI SRAM 

D. F. Heidel et al., IEEE TNS, 2009. 

Lingering questions as to whether or not low-energy proton and 
high-energy, light heavy ion upset mechanisms are identical. 

40 MeV/amu 
nitrogen @ 
TAMU 
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Choosing an Accelerator Source 
Van de Graaff 
• Small, low-cost 
• Energy range for modest 

machines tends to be less 
than 10 MeV – most less 
than 5 MeV 
– BNL and SNL Van de Graaffs 

are exceptions 

• Energy width of tuned 
beam is excellent (~1 keV) 

• Particle range is limited 
– Constrains angled irradiations 

Cyclotron 
• Large, high-cost 
• Energy range up to 500 MeV 

– UCD = 6.5 MeV < x < 63 MeV 
• Excluding degraders 

– IUCF = 30 MeV < x < 200 MeV 
– TRIUMF = 70 MeV < x < 

500 MeV 
• Excluding degraders 

• Energy width is larger 
(typically of order 100 keV) 

• Particle range is large 
– Less constraints, but more 

systematic uncertainty 
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(Excludes synchrotrons) 
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Uncertainty of Degraded Beams 
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Degrading high-energy beams increases energy and range dispersion 
Removes quasi-monoenergtic characteristics 

B. D. Sierawski et al., IEEE TNS, 2009. 

14.6 MeV tune 

63 MeV tune 

UCD CNL Proton Simulations 
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Angular Effects with Protons 
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Path length (i.e., angle of incidence) and LET affect efficacy of low-energy protons 
Cannot capture this important effect with high-energy, light heavy ions 

K. P. Rodbell et al., IEEE TNS, 2007. 

65 nm SOI SRAM Fails with 1.5 MeV Protons 
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Considerations for Low-Energy 
Proton Measurements 
• Measure and record materials in the beam line upstream from 

the device-under-test 
• Experimentally determine the mean beam energy and beam 

energy-width at the device-under-test location 
– Angular dispersion knowledge a plus if attainable 

• Complete transport calculations using accurate and properly 
ordered material stacks 
– Analytic methods acceptable, though Monte Carlo often required 

• Different levels of systematic error in the form of energy loss 
straggling can be introduced depending on the type of device-
under-test package, silicon thickness, degraders, etc. 

• If the die is thinned, variations in proton stopping power can 
occur in different regions of the device producing non-uniform 
SEE response 

v5 14 
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Space Environment 
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D. F. Heidel et al., IEEE TNS, 2008. 

Incident environment 
defined in interplanetary 
space by ESP model  
(example here) 

Shielding does not eliminate low-energy protons 
Accurate determination of local radiation environment requires 3-D CAD analysis 

Some “slice” of the 
environment will impact 
sensitive components 
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Low-Energy Proton Modeling 

• Modeling, informed by accelerated ground data, is essential for on-orbit 
event rate prediction for low-energy proton effects 

• Simulations must be 3-D and have adequate radiation transport physics 
to handle necessary electromagnetic interactions 

v5 16 

B. D. Sierawski et al., IEEE TNS, 2009. 

Inside box on a spacecraft 
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Possible Modeling Techniques 
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• Cannon 2010: E. H. Cannon et al., IEEE Trans. Nucl. Sci., vol. 57, no. 6, pp. 3493-3499, Dec. 2010. 
• CREME96: https://creme.isde.vanderbilt.edu/ (other references available at URL) 
• CRÈME-MC: https://creme.isde.vanderbilt.edu/ (other references available at URL) 
• MRED: R. A. Weller et al., IEEE Trans. Nucl. Sci., vol. 57, no. 4, pp. 1726-1746, Aug. 2010. 
• Edmonds 2008: L. D. Edmonds et al., IEEE Trans. Nucl. Sci., vol. 55, no. 5, pp. 2666-2678, Oct. 2008. 
• MUSCA SEP3: G. Hubert et al., IEEE Trans. Nucl. Sci., vol. 56, no. 6, pp. 3032-3042, Dec. 2009. 
• NOVICE: T. M. Jordan, IEEE Trans. Nucl. Sci., vol. 23, no. 6, pp. 1857-1861, Dec. 1976. 
• TIARA: S. Uznanski et al., IEEE Trans. Nucl. Sci., vol. 57, no. 4, pp. 1876-1883, Aug. 2010. 

Name Type 

Cannon 2010 Analytic 
CREME96 Analytic 
CRÈME-MC Monte Carlo 
Edmonds 2008 Analytic 
MRED Monte Carlo 
MUSCA SEP3 Monte Carlo 
NOVICE Monte Carlo 
TIARA Monte Carlo 

Caveat Emptor! Caveat Emptor! 

Modeling name acronyms are defined in references below. 

https://creme.isde.vanderbilt.edu/
https://creme.isde.vanderbilt.edu/
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Hardness Assurance Strategy 
• Measure the upset cross section with long-range, low-LET, light ions 

(He, C, N, and O) to detect potential low-energy proton sensitivity 
– Determines potential sensitivity to low-energy protons 
– Should have energy greater than 16 MeV/amu, though 16 MeV/amu N and 

O at LBNL could be considered 
– Could be optional if already planning to test with low-energy protons 
– **Assumes that upset mechanisms are the same/similar** 

• Create an event model using low-LET data and technology information 
– Applicable if using Monte Carlo techniques 
– Some intentional ambiguity regarding “technology information” 

• Validate the model by comparing it with the measured low-energy 
proton response 
– Some methods would skip directly to this step 

• Use the [calibrated] model to predict the on-orbit error rate 
v5 18 
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Conclusions 

• CMOS nodes at and below 90 nm have been 
identified as sensitive to low-energy proton 
direct ionization 

• Energy/range variation inherent to particles near 
end-of-range increase low-energy proton testing 
systematic errors 

• Hardness assurance practices for including low-
energy proton sensitivity must address the issue 
with a combination of relevant data collection 
and calibrated models 

v5 19 
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